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The understanding of disorder effects on crystallization is of fundamental and technological
importance. It is well established by both theory and experiment that particle-size polydispersity hinders
crystallization for isotropically interacting particles. Here, we address the effects of patch variability in a
model for tetrahedral colloids, where polydispersity is introduced independently on the size, position, and
strength of the attractive patches. Our simulations indicate that, unlike particle-size polydispersity,
angular polydispersity has a minor impact on the crystallization properties of tetrahedral colloidal
particles. Particles with angular polydispersity well within current experimental possibilities fully retain
their crystallization properties, a result which should encourage the realization of colloidal crystals in

experiment.
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The self-assembly of colloidal particles is a promising
way to develop new materials with targeted properties. The
possibility of tuning both the kinetics and the thermody-
namics of these particles via the shape, surface, or solvent
properties allows the realization of a broad spectrum of
equilibrium and nonequilibrium structures, many of which
are still unexplored [1]. Perhaps one of the most attractive
features of colloidal particles is the possibility of tuning
the properties of the surface with patches, i.e., functional-
ized spots whose number and geometrical arrangement
largely determine the thermodynamic properties and the
equilibrium ordered structures obtained at low effective
temperatures [2]. The possibility of forming ordered
structures on the micrometer scale by spontaneous crys-
tallization of colloids is an attractive perspective in tech-
nological applications; indeed, particles with different
degrees of anisotropy have been exploited in simulation
and experiment to obtain crystals [3], quasicrystals [4], and,
perhaps more importantly, open crystals [5-7]. Open
colloidal crystals have a significant technological potential:
the diamond crystal [8] (and even its amorphous phase
[9]) has been shown to have photonic properties, and its
theoretical study has been one of the driving forces of the
field [10-12]. The approach of decorating particles with
attractive spots is also experimentally proven [13,14], and,
in a milestone work, the experimental realization of a two-
dimensional (2D) open crystal of patchy particles has been
reported [6].

One of the major challenges in the experimental reali-
zation of colloidal crystals is the control over the imper-
fections in particle fabrication. For example, it is a well
established result that perfectly monodisperse hard spheres
are very good crystal formers, but increasing particle-size
polydispersity gradually favors local icosahedral structures
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that turn the system into a glass former [15-17]. The first
experimental realizations of hard-sphere crystals required
significant effort, due to the high degree of monodispersity
required [18]. On the other hand, the effect of imperfec-
tions of patches for the crystallization of open crystals is
yet unknown. Understanding this effect is very important
in order to obtain spontaneously assembling crystals in
experiment.

In this Letter, we report a numerical study of the effect of
model fabrication imperfections on the phase diagram and
on the crystallization process of a tetrahedral patchy
particle model. We select the case of four patches since
(1) it is the most technologically relevant and (ii) the crystal-
forming versus glass-forming behavior of such particles is
determined precisely by the patch size [11]. Thus, it is an
open question whether and to what extent crystallization is
retained with polydisperse patches.

In our simulations, we use the Kern-Frenkel model for
four-patch particles [19], where the centers of the patches
are located on the vertices of a tetrahedron. The interaction
potential v(i, j) is written as

00 ifrj<o
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v(i,j) =

where r;; is the interparticle distance and the angular
modulation function f(P; 1. 4.Pjs=1. 4) is defined in
terms of the unit vectors P, ;. 4 that identify the centers of
the patches (labeled k) on the surface of particle i.
Sf(Pik=1..4:Pjx=1.4) is O unless there are some k and /
such that £;; - p;; < cos(6;x) and £ - p;, < cos(6;;). In
other words, two particles feel an attraction of energy e
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ej,lc patch [24]. Without this constraint, the geometric properties
Pjk of the model are changed, and the extent to which the

. /

FIG. 1 (color online). Pictorial representation of two patchy
particles in an interacting configuration. The particle’s hard core
is represented with a light gray sphere, whose surface is decorated
with circular patches (dark Gray). Patch k on the surface of
particle j is described by an angular extension ¢, and by the
position vector P, ;.

whenever they are within a distance ¢ + 6 and the vector
joining the centers of mass intersects a patch on the surface
of each particle, as shown in Fig. 1. The patch size is
identified by the parameter cos(6; ;), and the radial inter-
action range is set to 6 = 0.24. Reduced units are used
throughout the Letter, with temperature 7 measured in units
of kg /e, pressure P in units of kg /(ec™3), and density p in
units of 6~3. We run Monte Calro (MC) simulations in the
NPT ensemble. The presence of patch-size polydispersity
effectively makes the particles distinguishable, consider-
ably increasing the computational cost of the simulations.
To ensure efficient sampling, we employ specialized MC
moves [20].

For models with homogeneous patches, it has been
shown that the interaction range & controls the location
of the liquid-gas critical point, but the metastability gap,
measuring the crystal-forming ability of the liquid, does not
change significantly with decreasing 6 [21,22]. In this
Letter, we focus on the effects of disorder on the three main
factors that control the crystallization behavior of tetrahe-
dral patchy particles [21-23], i.e., size, position, and
strength of the patches.

Size disorder is obtained by randomly choosing the patch
width cos(; ;) from a uniform distribution. We introduce
two types of patch-size polydispersity, allowing both
intraparticle and interparticle inhomogeneity. In the first
type, the patch size is independent for each patch: we label
this distribution pi', with cos(d; ) € [0.92, 1]. Here, the
index i = 1,..., N identifies the particle, and the index
k =1, ..., 4 identifies the patch. In the second type, the four
patches are the same for each particle but are independent
among different particles. We used distributions with
different average patch sizes but with the same width:
ph with cos(6) € [0.92,0.96] and cos(6; ;) the same for all
k and p! with cos(0) € [0.96, 1] and cos(6; ;) the same for
all k. The widest patch-size range considered in our Letter,
pih, is the largest possible that still retains the geometrical
constraint of having only one possible bond per attractive

qualitative features of the phase diagram are preserved has
yet to be investigated. Even within this limit, the patch-size
distributions we consider here are very wide, up to +10
degrees, where the average is around 15 degrees. As a
comparison, we recall that the 2D colloidal crystal realized
in [6] was obtained with a patch-size polydispersity of
five degrees.

Positional disorder is obtained by perturbing the tetra-
hedral symmetry of the patch arrangement on the surface of
the colloid. In spherical coordinates, each patch is displaced
by a randomly extracted inclination angle yw from its
original position. We consider three different y distribu-
tions, y € [0, Wma] With Wy = 7/36, 7/18, x/12, in
which the displacement is comparable to the width of the
patch interaction, Wy, & 0.

Energy disorder is implemented by altering the depth
of the attractive interaction for each patch ¢ &+ Ae, and
then imposing additivity between particle interactions,
€;; = (€; +¢€;)/2. We test three different disorder magni-
tudes, Ae/e = 0.1, 0.2, 0.3, with patches on the same
particles being different.

First, we investigate how the thermodynamics are
changed by the three forms of disorder. We fix the pressure
at a small positive value, P = 0.03, safely above the critical
pressure but still small enough to be relevant for colloidal
systems. At this pressure, the low-temperature equilibrium
phases are the open hexagonal and cubic diamond crystals.
The coexistence temperature for each of the patch-size
distributions considered is computed by Hamiltonian
Gibbs-Duhem integration [25,26], using the coexistence
temperature of the model with no patch-size polydispersity
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FIG. 2 (color online). Chemical potential of liquid (solid lines)
and crystal (dashed lines) phases at pressure P = 0.03: (a) for
systems with the three different patch-size distributions inves-
tigated and (b) for monodisperse systems with patch size
corresponding to the average values of the patch-size distribu-
tions in (a). For clarity, absolute free-energy values have been
shifted. A narrower average patch size consistently leads to a
sharper increase in SAyu, in line with the behavior of the
monodisperse particle studied in [23].
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taken from [23]. In Fig. 2(b), we show the bulk chemical
potentials fu for the model, without disorder in the liquid
and crystal phases, for three different amplitudes of the
patch width. The liquid and crystal lines cross at the
melting temperature, and the difference fAu below melting
is the thermodynamic driving force, which quantifies the
thermodynamic ease of crystallization for each system. The
figure shows that the driving force, indeed, increases with
decreasing patch width. In Fig. 2(a), we consider the effects
of patch-size disorder for distributions with average size
corresponding to the monodisperse case in Fig. 2(b). The
comparison shows that the free energies of the two phases
are only marginally affected by patch-size disorder, even
with the widest distribution of patch sizes we consider.
Although rather small, the destabilizing effect of the
disordered patches is larger in the ordered crystal phase,
indicating that the latter is less effective in accommodating
the disorder. This is reflected in the slightly lowered
coexistence temperatures with respect to monodisperse
models. By comparing the different disorder distributions
in Fig. 2(a), we see that the average size of patches retains a
strong influence on the crystallization ability. Particles with
wider patches [small (cos(d;))] have a small driving force
for crystallization (defined as the difference between the
chemical potential of the crystal and that of the liquid
phase), which hardly increases with lowering temperature,
indicating a poor crystal-forming ability. By lowering
(cos(0y)), one effectively obtains a glass former [23].
Particles with narrower patches [large (cos(6;))], on the
other hand, display a large driving force, sharply increasing
with decreasing temperature, signaling an excellent crystal
former. This shows that, even in the presence of strong
disorder, the average patch size is still the key feature in the
interaction potential that controls the crystallization ability
in this model [23].

Interestingly, all models considered here display only a
modest decrease of the melting temperature with increasing
disorder. The introduction of disorder marginally favors the
liquid phase for the following reason: disorder will produce
patches that have a vanishing size, effectively altering the
valence (coordination number) of the particles. This lowers
the effective concentration of crystal-forming particles,
requiring a lower temperature for nucleation. But this
decrease is only about 5%, showing that, together with
the modest decrease of thermodynamic driving force, all
the crystallization properties of the disorder-free model
are retained in presence of size disorder. The amount of
disorder can be arbitrarily large as long as the number of
patches is four and that each patch is allowed to form only
one bond. These are the only requirements for the nucle-
ation of the diamond crystal phase considered here.

In Fig. 3(a), we focus on the effects of positional
disorder. Since imperfect placement of the patches on
the particles’ surface alters their tetrahedral symmetry, this
type of disorder can have a significant effect on their

crystallization. We focus, here, on particles with patch size
cos(0) = 0.98, i.e., on the good crystal formers (in the
Supplemental Material [20] we show the same analysis,
also, for systems with large patches). Figure 3(a) shows
the thermodynamic driving force fAu as a function of
the reduced temperature f3,, — f for systems with different
amounts of positional disorder ... Around the melting
point (B, —p =0), the thermodynamic driving force
changes linearly, fAy = AH(f,, — 3), where AH is the
enthalpy change at melting. Figure 3(a) shows that
AH does not change significantly with disorder until
Wmax ~ 20°, where the enthalpy difference between the
liquid and the solid phase starts dropping significantly. For
Wmax < 20°, the enthalpy difference between the liquid and
solid phases does not change significantly with disorder,
and so, the thermodynamic driving force increases con-
siderably with supercooling. As we have shown in the
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FIG. 3 (color online). Chemical potential difference between
the liquid phase and the solid phase at pressure P = 0.03 for
systems with cos(@) = 0.98 as a function of the normalized
temperature f3,, — f (with = 1/kgT): (a) with positional dis-
order, (b) with energy disorder. Different lines represent systems
with different degrees of disorder. The vertical dashed line
represents the melting locus (f3,, — # = 0). The horizontal dashed
line indicates the thermodynamic driving force necessary to
observe crystallization in the simulations (fAu = 1). The insets
show the change of the melting temperature (7',,) with positional
disorder (a) and energy disorder (b). The dashed-dotted lines
represent the thermodynamic driving force of crystallization

given by Sy = AH(f,, - ).
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discussion of the patch-size disorder, the thermodynamic
driving force is the factor that controls crystallization, and
the amount of driving force necessary to observe crystal-
lization depends almost entirely on the (average) size of the
patches. For a system with cos(@) = 0.98, approximately
Ap ~ 1kgT are needed to observe crystallization in simu-
lation, and this limit is represented as a horizontal dashed
line in Fig. 3(a). The figure shows that, for y ., < 20°,
crystallization in the diamond crystal is easily observed,
while for ., = 20°, the system cannot reach the threshold
of Au ~ 1kgT regardless of the degree of supercooling. We
note that, for the limiting case of w,,, = 20°, we could
observe spontaneous crystallization from simulations, with
the crystal containing many defects, or even comprising
metastable phases different from the diamond. For both
narrow and wide patches, the scenario is similar to what
was found in Fig. 2 for the patch-width disorder: the major
effect of positional disorder is to increase the free energy of
the crystal phase, thus, lowering the melting temperature,
shown in the inset of Fig. 3(a). The suppression of the
melting point is modest for all disorders considered.

Figure 3(b) considers the effects of energy disorder,
plotting the driving force fAu as a function of the reduced
temperature f3,, — . Even for the highest degree of disorder
Ae/e = 0.3, the melting enthalpy (as represented by the
slopes of the curves at f8,, —f = 0) and the increase in
driving force with supercooling remain unchanged. Among
all forms of disorder considered in this Letter, a poly-
disperse distribution of interaction energies has the least
impact on the crystallization scenario. Simulations with
Ae/e Z 0.4 still crystallize but with intervening fractiona-
tion; i.e., the crystal nucleus recruits all the particles with
strong enough patches and then stops growing, leaving the
particles with weaker patches in the fluid phase.

In the Supplemental Material [20], we also consider the
change of the nucleation barriers as a function of size
disorder, confirming that the features of the crystallization
process of the monodisperse model are fully retained: the
nucleation barrier goes down slowly with temperature
in the wide patch case and sharply in the narrow patch
case; we ascribe the majority of this effect to the different
trends in the driving force shown in Fig. 2. We also
investigated the coupling between patch-size disorder and
the composition of crystals (see [20]). It is known that
particle-size polydispersity induces demixing of hard
spheres into crystals with different lattice sizes [15]. We
find that patch-size disorder can introduce similar behavior,
i.e., fractionation upon crystal nucleation.

To conclude, our focus was to explore the effects of
angular disorder on the crystallization properties of patchy
models, which are, nowadays, one of the major candidates
for the experimental realization of three-dimensional col-
loidal crystals. Imperfections inevitably arising in the
particle fabrication process will yield attractive patches
that are polydisperse in size, shape, and strength. It is a

common feeling among scientists that even small imper-
fections will favor the formation of disordered arrested
states over ordered structures, a feeling borrowed from the
well established result that particle-size polydispersity
hinders crystallization of isotropic particles. On the con-
trary, we show that crystallization is very robust to
imperfections in the patch size, position and interaction
energy, as long as the average geometry allows bonds with
the correct symmetry (tetrahedral in our case). More
precisely, (i) patch-size polydispersity seems to have only
a modest impact on crystallization as long as the patches
can only be involved in a single bond at any given time,
(i) positional disorder of patches prevents crystallization
only when it strongly perturbs tetrahedral symmetry
(Ve > 20°), and (iii) energy disorder has a negligible
impact on crystallization. Our results suggest that a high
degree of precision in the particle decoration is not needed
to obtain long-range structures from patchy particles, and
that currently available decoration techniques should have
sufficient precision to reach the goal. Moreover, the robust-
ness of the self-assembly behavior of patchy particles with
respect to angular disorder further supports their use as a
model system to understand the bulk properties of bio-
logical materials, like proteins and DNA, whose inter-
actions are intrinsically anisotropic.
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