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We study the diffusive motion of particles among fixed spherical crowders. The diffusers interact with
the crowders through a combination of a hard-core repulsion and a short-range attraction. The long-time
effective diffusion coefficient of the diffusers is found to depend nonmonotonically on the strength of their
attraction to the crowders. That is, for a given concentration of crowders, a weak attraction to the crowders
enhances diffusion. We show that this counterintuitive fact can be understood in terms of the mesoscopic
excess chemical potential landscape experienced by the diffuser. The roughness of this excess chemical
potential landscape quantitatively captures the nonmonotonic dependence of the diffusion rate on the
strength of crowder-diffuser attraction; thus, it is a purely static predictor of dynamic behavior. The
mesoscopic view given here provides a unified explanation for enhanced diffusion effects that have been
found in various systems of technological and biological interest.
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The physical crowdedness occurring within living cells
is now known to play a key role in intracellular biological
processes [1]. This understanding has inspired studies
of macromolecular crowding effects on protein-protein
binding [2–4], transcriptional regulation [5], chromatin
compaction [6], and enzyme-catalyzed reactions [7]. A
key aspect of these effects is the fact that molecules diffuse
more slowly in the crowded interior of a living cell than
in a dilute solution [8]. This reduction in diffusion rate has
been studied experimentally in vivo [9] and in vitro [10], as
well as by computer simulation [11], with an increasing
emphasis on how the diffusion of molecules might depend
on numerous properties of the crowding agents, such as
their size and mobility [12].
Here we focus on the effects of a diffusing particle’s

interactions with the crowding obstacles. For instance, a
transcription factor protein diffusing in the cell nucleus has
nonspecific interactions with the surrounding chromatin;
these interactions are known to play an important role in
the kinetics of protein-DNA binding [13]. Furthermore,
since chromatin is a large complex of DNA and proteins,
the time scale of its own motion must be slower than that
of the diffusing protein. If this separation of time scales is
extreme, the protein diffuses in an effectively fixed envi-
ronment. Diffusion among fixed obstacles arises in many
other contexts as well, ranging from gel electrophoresis
to the functioning of fuel cells; in all of these contexts we
must understand the effects of the diffusing particle’s
interactions with its surroundings.
In this Letter we study the diffusive motion of a particle

among fixed “crowders.” The diffuser has an attractive
interaction with the crowders as well as excluded volume
interactions. We use Brownian dynamics simulations to
calculate the long-time effective diffusion coefficient of the

diffuser as a function of the strength of its attraction to the
crowders. Because the crowders impede the motion of the
diffuser, one might expect any crowder-diffuser attraction
to slow down diffusion. Counterintuitively, however, the
effective diffusion coefficient is larger among slightly
attractive crowders than among purely repulsive ones;
that is, the effective rate of diffusion depends nonmono-
tonically on the attraction strength. An enhanced rate of
diffusion due to weak attractive interactions has been
found previously in several different systems [14–16] and
explained in terms appropriate to each system. Here we
argue that the nonmonotonic dependence of the diffusion
coefficient on the attraction strength is a general feature of
diffusion in a crowded environment, and show that it can be
understood quantitatively in terms of the effective excess
chemical potential landscape experienced by the diffuser.
The roughness of this landscape is decreased when a small
attractive interaction is added, resulting in faster diffusion.
This mechanism for enhanced diffusion holds even at low
densities of crowders, where previous explanations of the
nonmonotonic behavior in terms of “caging” do not apply.
We study the motion of a spherical “diffuser” of radius

rd ¼ 1 nm in a space containing a number Ncrowd of fixed
spherical crowders of radius rc ¼ 3 nm; see the inset of
Fig. 1. The diffusing particle interacts with the crowders
via the pairwise potential

UðrÞ ¼
�
Ularge −

Ulargeþϵ
δ ðr − rt þ δÞ if r ≤ rt

−ϵ exp ½−ðr − rtÞ=λ� if r ≥ rt;
ð1Þ

where rt ¼ rc þ rd is the sum of the hard-core radii of the
crowder and diffuser. This function is plotted in Fig. 1. The
first part of this potential closely approximates a hard-core
interaction, using a large but finite force approximately
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equal to Ularge=δ; here we have used Ularge ¼ 40kBT and
δ ¼ 0.1 nm. The second part of the potential gives rise to
an attractive interaction of strength ϵ and characteristic
range λ between the diffuser and the crowders. We have
used a value λ ¼ 0.5 nm throughout this work. The diffuser
moves under the influence of thermal fluctuations as well
as its interactions with crowders; its motion is described by
the overdamped Langevin equation. The overall time scale
of the problem can be described in terms of the diffusion
coefficient D0 of the diffuser in the absence of any
crowders. We define the elementary time τ ¼ r2d=6D0.
We study the motion of the diffuser among the fixed

crowders by performing Brownian dynamics (BD) simu-
lations using the GROMACS package [18], solving the
overdamped Langevin equation numerically. A time step of
dt ¼ 4.5 × 10−4τ is used, and the attractive interaction is
ignored for r − rt > 6λ. In the Supplemental Material [19]
we show that this time step is sufficiently small to
accurately simulate the system. The fixed positions of
the crowders are chosen by performing short simulations
with only mobile crowders. In several cases we have
verified that our results do not depend on the specific
random choice of crowder positions. The simulations used
to determine the effective diffusion coefficient of the
diffuser are performed with different numbers Ncrowd of
crowders in a cubic simulation box of side L ¼ 70 nmwith
periodic boundary conditions. This gives rise to different
volume fractions ϕ ¼ 4πr3cNcrowd=3L3 of crowders. We
note that because of the nonzero size of the diffuser, the
crowder volume fraction ϕ is distinct from the fraction of
the volume excluded to the diffuser. In order to obtain good
statistics on diffuser motion, each simulation is performed
with 500 diffusers moving independently of each other
(without diffuser-diffuser interactions). This would not be
possible in simulations with mobile crowders, since
crowder-diffuser interactions would give rise to effective
diffuser-diffuser interactions.

The mean-squared displacement (MSD) of the diffuser,
hr2ðtÞi, is calculated from simulations lasting from 3×105τ
to 2 × 106τ. By averaging the MSD over 500 independent
diffusers, we obtain meaningful statistics even for time
intervals comparable to the simulation length. Raw MSD
data are shown in the Supplemental Material [19]. The
long-time effective diffusion coefficient Deff of the diffuser
is equal to one-sixth of the slope of the MSD curve at
long times. To calculate Deff we use the average slope of
the MSD curve between t ¼ 1 × 104τ and t ¼ 2 × 104τ.
At these times, the MSD is almost linear with time, except
for high volume fractions near ϕ ¼ 0.5.
With increasing volume fraction of crowders, the result-

ing obstruction causes the effective diffusion coefficient of
the diffuser to decrease (Fig. 2). It might be expected that
by turning on the attractive interaction between the diffuser
and the crowders, the effective diffusion coefficient would
be further decreased, since the diffuser would on average
spend more time near the crowders. Instead we find that,
counterintuitively, a small attractive interaction with the
crowders leads to a higher effective diffusion coefficient
(see Fig. 2). At a fixed crowding level ϕ, the effective
diffusion coefficient of the diffuser depends nonmonotoni-
cally on the strength ϵ of its attraction to the crowders. The
extent of the initial increase in Deff becomes larger with
increasing density of crowders, and so does the value of ϵ at
which the maximum Deff occurs [Fig. 3(a)]. This value,
ϵmax, was estimated by fitting a sixth-order polynomial to
the estimated diffusion coefficients as a function of ϵ and
then maximizing the resulting polynomial.
A particle diffusing in a rugged potential energy land-

scape must overcome energy barriers, and will always
diffuse more slowly than in a flat potential landscape [20].
It is tempting to reason that in the absence of any crowder-
diffuser attractions, the diffuser experiences a flat potential
energy in between its collisions with crowders, and that
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FIG. 1 (color online). Plot of interaction potential between
crowders (radius 3 nm) and diffusers (radius 1 nm) as a function
of the distance r between particle centers. The potential is given
by Eq. (1). Inset: BD simulation snapshot showing crowders
(blue) and a single diffuser (red). Crowder volume fraction
ϕ ¼ 0.24. Snapshot made using the Visual Molecular Dynamics
software package [17].
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FIG. 2. Diffusion coefficient of the diffuser as a function of
the strength ϵ of the crowder-diffuser attractive interaction. The
diffusion coefficient is normalized by its value in the absence of
crowding, and is shown for six different values of the crowder
volume fraction ϕ. Top to bottom: ϕ ¼ 0.01, ϕ ¼ 0.08, ϕ ¼ 0.16,
ϕ ¼ 0.24, ϕ ¼ 0.32, and ϕ ¼ 0.40. Error bars are from the
standard error of the means of five subgroups of diffusers
(100 in each group).
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any attractive interactions will only slow down diffusion.
However, we have just seen that this is not the case.
Next we will see that the enhanced diffusion due to the
attractive interactions may be understood from a meso-
scopic perspective that relates the effective diffusion rate
to the roughness or flatness of a coarse-grained effective
potential.
We partition space into cubic “cells” intermediate in size

between the crowders and the simulation box. Viewed on
this scale, the diffuser moves from cell to cell, feeling an
effective potential equal to the excess or nonideal contri-
bution to the diffuser’s chemical potential:

μcelli ¼ −kBT · ln

�
V−1
cell

Z
cell i

e−βUtotðr⃗Þdr⃗
�
; ð2Þ

where Utotð~rÞ is the total potential energy of a diffuser
at position ~r. Using the same crowder positions as in the
BD simulations, we calculate the effective potential for
each cell numerically by discretizing the integral in Eq. (2).
A measure of the roughness of the effective potential
landscape is the standard deviation of the cell potentials:

σ½μcell� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ncells

X
i

ðμcelli − μcellÞ2
s

: ð3Þ

This standard deviation is plotted in Fig. 3(b) as a function
of the attraction strength ϵ (right vertical axis) for the case
where the crowder volume fraction is ϕ ¼ 0.24. The three
curves show this quantity for different cell sizes (5, 7, and
14 nm in length). In all three cases, the roughness of the
effective potential landscape depends nonmonotonically on
ϵ, reaching a minimum near the value at which Deff is
maximized. This suggests the idea of a random walk on the
lattice of cells, with maximum diffusion when the land-
scape of cell excess chemical potentials is flattest. This
picture is valid when the cells are large enough that the
effective steps taking the diffuser from one cell to another
are statistically uncorrelated. The correlation of successive
displacements on short time scales is reflected by the
changing slope of the MSD as a function of time. The time
scale of crossover to the asymptotic regime corresponds
to a length scale, weakly dependent on ϕ, of about 6 nm
(data not shown). The variance shown in Fig. 3(b) for cell
size 14 nm (dotted curve) or 7 nm (dashed curve) should
therefore provide a good measure of the roughness of the
effective excess chemical potential landscape.
Equation (2) for a cell’s effective potential suggests the

following way to estimate the value of ϵ at which Deff is
maximized. In the limit of dilute crowders, some cells will
contain a crowder, while others will not. In the absence of
any attractive interactions, cells with crowders will have a
higher effective potential due to the volume excluded to the
diffuser. These are precisely the cells whose effective
potentials will be decreased when ϵ is increased from zero;
the statistical spread in cell effective potentials will
decrease as a result, leading to a flatter potential landscape
and faster diffusion. The fastest diffusion should occur
when the attractive interactions compensate, in the integral
of Eq. (2), for the excluded volume of a crowder. Thus,
diffusion will be maximized when ϵ is chosen such thatZ

∞

0

4πr2ðe−βUðrÞ − 1Þdr ¼ 0: ð4Þ

This results in the estimate of ϵmax ≈ 1.4kBT, in good
agreement with the values of ϵmax from the BD simulations
[Fig. 3(a)]. The integral in Eq. (4) above is proportional to
the second virial coefficient for crowder-diffuser interaction.
In the SupplementalMaterial [19] we analyze Eq. (4) for the
simple case of a square-well crowder-diffuser potential.
The accelerated diffusion in the presence of small

attractive interactions is reminiscent of the phenomenon
of facilitated diffusion [13,21], in which nonspecific
protein-DNA attractions allow a transcription factor to find
its binding site on DNA faster than is possible simply by
diffusion in the three-dimensional bulk. Our results may
indeed be relevant to diffusion in chromatin; however,
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FIG. 3 (color online). (a) The value of the crowder-diffuser
attraction strength, ϵ, at which the maximum in the diffusion
coefficient occurs (see Fig. 2), as a function of the volume
fraction ϕ of crowders. Solid line: simulation results. Dashed line:
approximate value given by Eq. (4). (b) Black curve, left y axis:
Diffusion coefficient of diffuser as a function of the strength ϵ of
the crowder-diffuser attractive interaction. The volume fraction
of crowders is fixed at ϕ ¼ 0.24. The diffusion coefficient is
normalized by its value in the absence of crowding. Red curves,
right y axis: Standard deviation of cell free energies calculated
using Eqs. (2) and (3) over the simulation box of size
70 × 70 × 70 nm. Solid red curve: 5 nm cubic cells. Dashed
red curve: 7 nm cubic cells. Dotted red curve: 14 nm cubic cells.
Note that in this figure we show data for negative values of ϵ,
corresponding to crowder-diffuser repulsion.
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existing theories of facilitated diffusion predict an effective
three-dimensional diffusion coefficient that is strictly
decreasing as a function of protein-DNA attraction strength
[22]. The reduction in search time in facilitated diffusion
is not due to any increase in the overall diffusion rate,
but rather to the geometric fact that the target is on the
quasi-one-dimensional DNA. For similar reasons, the time
necessary for a molecule to diffuse through a pore [23] or
out of a spherical cavity [24] may be a nonmonotonic
function of its attraction to the confining walls.
Several authors have found nonmonotonic dependences

in effective diffusion coefficients with increasing strengths
of attraction between molecules. Huang et al. [25] per-
formed simulations of polymers diffusing amongst fixed
attractive nanoparticles and noted that as the attraction is
turned on, the effective diffusion coefficient of the poly-
mers initially remains constant before decreasing. In one
case (see Fig. 1 of Ref. [25]) their data show a non-
monotonic dependence on attraction strength, but they did
not appear to consider this statistically significant. The
small excluded volume of their nanoparticles implies via
Eq. (4) that the maximum of the diffusion coefficient
should occur at very small values of the attraction strength,
making it difficult to resolve. In another work, Lee et al.
[26] showed that polymers diffusing among fixed spherical
obstacles could diffuse faster if they were slightly attracted
to those obstacles. However, they attributed this effect
to a mechanism involving the decreased configurational
entropy as polymers squeeze through constrictions between
cages formed by the obstacles. Here we have shown not
only that the same nonmonotonic dependence occurs
with monomers rather than polymers, but also that it occurs
even when the crowders are dilute and the cage picture
does not apply.
Holmes [14] has used an effective medium theory to

calculate the effective diffusion coefficient of ions moving
in a charged polymeric gel, finding it to be a nonmonotonic
function of the charge of the ion, with a maximum near zero
charge. Similarly, Yamamoto and Schweitzer [15] used
mode coupling theory to study the diffusion of nano-
particles in polymer melts and found the effective diffusion
coefficient to depend nonmonotonically on the strength of
the polymer-nanoparticle attraction. Finally, Pham et al.
[16] simulated systems of sticky hard spheres at very high
densities near the glass transition, revealing a pronounced
nonmonotonic dependence of the diffusion rate on the
attractions between molecules. Our results show that the
same nonmonotonic behavior occurs even at low crowder
densities, where caging does not occur. Instead, we have
shown that the nonmonotonicity of the effective diffusion
coefficient is attributable to changes in roughness of the
effective excess chemical potential landscape as a function
of the attraction strength. This explanation makes no
reference to the particular details of the system; therefore,
we expect that enhanced diffusion due to weak attraction

interactions is a general phenomenon. Indeed, in the
Supplemental Material [19] we show that the nonmono-
tonic dependence of the effective diffusion coefficient on
the attraction strength is almost completely independent
of the details of the arrangement of the crowders; these can
be arranged in a periodic array or in gel-like structures, for
example. The nonmonotonicity persists as well (although
weakly) when the diffuser moves among mobile crowders.
Finally, we show in [19] that the diffusion rate of a small
polymer among fixed crowders has a very pronounced
nonmonotonic dependence on ϵ The intuitive picture that
emerges is that maximal diffusion is obtained when the
diffusing particle sees a relatively flat effective potential
at the long length scale relevant for diffusion. This potential
is measured, to first order, by the second virial coefficient
between the crowders and the diffusing particle and it is a
generic feature that does not depend on the details of the
interaction potential.
In summary, we performed BD simulations of particles

diffusing among fixed spherical crowders. As the strength
of the attractive diffuser-crowder interaction was varied, the
long-time effective diffusion coefficient of the diffusers
changed nonmonotonically (Fig. 2). The enhancement
of diffusion due to attractive interactions has been noted
previously in several systems, but was attributed to aspects
of these systems such as the polymeric nature of the diffuser
[26] or the caging effect that occurs at high densities [16].
Here we have given a generic analysis of this counterin-
tuitive effect in terms of the coarse-grained excess chemical
potential landscape in which the diffuser moves. The
roughness or flatness of this landscape is a purely static
quantity that correlates very well with the effective diffusion
coefficient of the diffuser [Fig. 3(b)]. Our results suggest
that quite generally, the diffusion rate of molecules moving
in crowded environments will depend nonmonotonically
on the strength of attractions between the diffusers and
crowding agents, and provides a way of predicting the
conditions that will maximize the diffusion rate.
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