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The tangling of two tethered microswimming worms serving as the ends of “active strings” is
investigated experimentally and modeled analytically. C. elegans nematodes of similar size are caught by
their tails using micropipettes and left to swim and interact at different separations over long times. The
worms are found to tangle in a reproducible and statistically predictable manner, which is modeled based
on the relative motion of the worm heads. Our results provide insight into the intricate tangling interactions
present in active biological systems.
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Entanglements are ubiquitous in our everyday lives with
headphone cords forming braids and knots in our pockets,
collections of small items like staples arranging into large
tangled networks [1], and hair strands knotting into dis-
ordered snarls [2]. A less common example is the knotting
of the umbilical cord which occurs at birth for about 1% of
the population [3]. At smaller scales, like in the case of
DNA, knots occur naturally in the recombination and
replication cycles and are thought to contribute to gene
regulation [4–6]. Tangling in polymers [7], proteins [3],
and the flagella in groups of spermatozoa [8,9] as well as
bacteria are further examples. Flagellar entanglements
have been shown to stabilize bacterial networks in biofilms
[10,11] and also give rise to the well-studied run-and-
tumble motion of bacteria, where several flagella are
tangled into a propellerlike bundle, allowing for propulsion
in a specific direction [12–14].
Over recent years, active networks of, e.g., highly

packed bacteria [15,16], cilia [17–20], nematodes
[21,22], sperm cells [23], self-locomoting slender rods
[24], microtubule filaments [25,26], and colloidal particles
[27] have been studied for the purpose of bioengineering
applications [28] and understanding the complex, collective
interactions present in these living or active liquids [29,30].
In addition to hydrodynamic coupling and collisions,
entanglements play a vital role in determining the final
physical properties and biological function of the active
material. In the case of cilia, for example, the synchronized
beating enables locomotion of a variety of microorganisms
as well as the transport of mucus from our lungs. Any
tangling of the cilium strands would certainly have severe
biological consequences.
Mathematicians and physicists have taken a keen interest

in understanding the formation and topology of knots and
tangles. To spontaneously form a knot, a long and flexible
string with a certain excluded volume and bending stiffness

has to be given enough energy to move around and explore
its surroundings [31]. For very small strings, like polymer
chains, thermal energy is sufficient to reptate and entangle
the molecules [7]. For larger objects, however, extra energy
input is needed, as in the case of the driven helical rotation
of bacterial flagella [12–14] or for vigorously shaken ball
chains and strings [32–35]. Independent of the formation
strategy, the tangle topology can be defined by the Conway
notation [36–40].
The formation, lifetime, and untying of knots has been

investigated experimentally in macroscopic systems con-
sisting of single strings, chains, and ropes of different
lengths and stiffnesses [32–35]. Upon shaking these pas-
sive strings, self-induced knots of different types were
found, and the knotting probability was theoretically
modeled. Most knots form and disappear due to the string
ends moving in and out of chain loops and around straight
segments of the chain. To the best of our knowledge, this
intricate chain end motion has not been closely studied, nor
has the interaction between two chain ends.
Here we present a time-resolved experimental system

illustrated in Fig. 1(a), probing the dynamic tangling of two

d
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FIG. 1 (color online). (a) Schematic illustration of the exper-
imental setup where two worms were held by Z-shaped micro-
pipettes. (b) Optical microscopy image of two young adult
C. elegans worms swimming at a separation d. Scale bar 200 μm.
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small worms serving as active, i.e., self-driven, strings on
a millimetric scale. The nematode Caenorhabditis elegans
is a millimeter-sized microswimmer used as a model
organism to probe undulatory locomotion experimentally
[41–45]. When tail anchored, C. elegans has been shown to
move in a highly reproducible, undulatory fashion with a
well-defined frequency and amplitude [43]. In our experi-
ments, the nematodes were placed in a buffer solution and
held by their tails with long (∼2 cm) and thin (∼20 μm)
micropipettes made as described in Refs. [46,47], and
carefully placed side by side at a separation d as shown in
Fig. 1(b) (see the Supplemental Material for more exper-
imental details [48]). The motion of the worms was
monitored with a camera (56 fps) as shown in the time-
lapse snapshots of Fig. 2(a) (see the Supplemental Material
movie SM1.avi [48]). The lateral positions of the worm
heads were tracked and are plotted as a function of time in
Fig. 2(b), where sinusoidal functions have been fit to the
three first noninteracting periods of both worms, showing
the smooth, undulatory motion of the swimmers.
At close enough distances, the worms were seen to

frequently overlap and form temporary tangles. A typical
example of the formation of such a tangle is shown by the
head positions in Fig. 2(b). The undulatory motion of the
slender bodies remains unchanged throughout a tangle,
deeming the attempt frequency to untangle the same as
the swimming frequency of the worms, which finally exit
the locked configuration by moving their heads apart. The
undoing of the tangle is sometimes driven by the motion of
only one of the worms.

Here, two different types of tangles shown in Figs. 2(c)
and 2(d) were found to occur frequently and in a repro-
ducible manner. These could be recognized by the number
of overlapping points and are here defined as a 2- and 3-
tangle, respectively (in the Conway notation, these tangles
would correspond to vertical rational tangles of type 1=2
and 1=3 [36]). To understand the formation of these specific
tangles, the worms were modeled as strings with an average
length L ∼ Lleft ∼ Lright and radius R. Consistent with our
observations, the lateral position of the string ends (worm
heads) were defined as sinusoidal functions with a maxi-
mum amplitude of A ¼ kL, where k is an experimentally
determinable constant. The left and right string end
positions could, thus, be written as xL ¼ A sinðtþ ϕÞ
and xR ¼ A sin tþ d, respectively, where ϕ ∈ ½0; π� is
the phase shift between the active strings, and d > 0 is
the distance between their anchors.
The probability of these strings entangling will vanish

at large distances and become increasingly probable as
the string ends start to overlap, i.e., at some point in
time, xL ≥ xR. This results in a critical ratio between the
distance and amplitude for any overlap to be possible:
d=A ≤ sinðtþ ϕÞ − sin t. For an entanglement to be physi-
cally possible, it is not sufficient for only the string ends to
overlap. Instead, a certain fraction (Lc=L) of each string
needs to be available to form a full tangle with a minimum
length of Lc. We, therefore, consider that both worms must
have a swimming amplitude such that they reach a distance
greater than Lc beyond the symmetry plane [exemplified by
the left worm in the second frame of Fig. 2(a)]. Thus, we
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FIG. 2 (color online). (a) Snapshots (0.054 s between each image) showing the tangling of two worms swimming at a distance
d ¼ 370 μm apart. (b) The lateral position of the heads of the same worms. The worms slowly shift from in-phase to out-of-phase
swimming, allowing the heads to overlap and the worms to wrap around each other’s bodies and form a tangle. Subsequently, they exit
the tangle in phase with the same sinusoidal motion as prior to the tangling event. The gray zone in the graph denotes the time frame of
the snapshots in (a) (image of every third data point shown). The solid lines are sinusoidal fits to the head positions of both of the worms.
(c),(d) Two worms at different separations forming a 2- and 3-tangle, respectively. (e) A schematic illustration of a 2 tangle modeled as a
helix with radius R, twist π, and arc length L2. All scale bars represent 200 μm.
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can state that for a tangle to occur, A ≥ d=2þ Lc, which
yields

L
d
≥
�
2

�
k −

Lc

L

��
−1
: ð1Þ

This equation corresponds to an upper bound to the critical
ratio between the chain length and distance for an entan-
glement to be theoretically possible.
The lowest-order tangle seen in our system is the

2 rational tangle [Fig. 2(c)] illustrated schematically in
Fig. 2(e). This tangle can be described as a helix with a
radius R (the same as the worm radius), curvature κ, and
twist π. The arc length (minimum string length required for
this tangle) then is Lc ¼ L2 ¼ π

ffiffiffiffiffiffiffiffi
R=κ

p
. The proportionality

constant relating the maximum swimming amplitude
(see the Supplemental Material [48]) to the worm length
has been measured as k ¼ 0.8� 0.05 for single worms.
By measuring the mean radius and length of the worms
used in this study (young adults and adults, R ¼ 29� 2 μm
and L ¼ 1080� 70 μm) and the mean of the absolute
curvature of the first (anterior) half of their bodies in a
state of normal swimming (κ ¼ 3.3� 0.2 mm−1), an esti-
mate of L2=L ¼ 0.27� 0.02 could, thus, be made. By
applying the helix model to Eq. (1), the predicted critical
ratio between the worm length and distance for any
entanglement to be possible is ðL=dÞ2 ≥ 0.95� 0.10.
Following the same approach, the critical ratio for a 3
tangle modeled as a helix with a twist of 2π is calculated
as ðL=dÞ3 ¼ 2.0� 0.3.
The experiments were performed at different distances

with several pairs of worms of similar size. In a particular
experiment, the presence of 2- and 3-tangles were noted. In
Fig. 3(a), we plot if a tangle could be observed at a given ratio
L=d and also indicate the type of tangle. The two vertical
lines in the graph denote the theoretically predicted critical
ratios ðL=dÞ2 and ðL=dÞ3, and the experimental onsets are,
within error, in excellent agreement with the model.
Note that 2 tangles were always present in experiments in
which 3 tangles were observed.
In Figs. 3(b) and 3(c), the distributions of entanglement

lifetimes are shown for several experiments performed in
the two extreme cases of large (L=d ¼ 1.0� 0.2) and small
(L=d ¼ 5.7� 2.8) separations, respectively (for further
details, see the Supplemental Material [48]). At the larger
separation, only 2 tangles are possible and have an average
lifetime of τ2 ¼ 0.18� 0.03 s. However, for the shorter
separation, both 2- and 3-tangles were possible, and this is
clearly seen in Fig. 3(c) where a shoulder around τ3 ≈
0.4 s ≈ 2τ2 has formed due to the occurrence of the more
long-lived 3 tangle stabilized by an additional crossing
which requires extra time to become undone. Note that,
as one might expect, even for short distances, the 3 tangles
are much less probable than 2 tangles. A slight shift and
widening of the 2 peak at close distances is also apparent

when comparing the two distributions [see vertical dashed
lines in Figs. 3(b) and 3(c)], indicating more variations in
the tangling events as the worms are brought closer
together. A few 3 tangles remained stable for around
10 s, which corresponds to over 20 full swimming cycles
(untangling attempts). These dynamic tangles were beating
and rotating reminiscent of bacterial bundles (see the
Supplemental Material movie SM2.avi [48]). Variables
that affect the tangle stability are the length, thickness,
and bending stiffness of the worms, the attempt frequency
to untangle, the friction between the worms [49], as well
as contact between the worms eliciting mechanosensory
responses [50]. The latter of these has previously been
shown not to affect the collective swimming of C. elegans
[21] and did not seem to strongly affect the tangling
dynamics in our experiments either.
To investigate the entanglement probability as L=d

increases above the critical ratios derived above, we now
follow the lateral motion of the point (xc) on the worm
body located at a distance of Lc from the head. Since the
worm propagates traveling waves down its body, xcðtÞ
can also be modeled as a sinusoidal function with an
amplitude Ac ¼ kcL, where kc is an experimentally deter-
minable constant. For the left and right worms, we
thereby have xc;L ¼ Ac sinðtþ ϕÞ and xc;R ¼ Ac sin tþ
d, respectively. At a given separation distance, these
sinusoidal functions intersect at a range of phase shifts
above some critical value. For an entanglement to be possi-
ble, the maximum value of the difference Δ ¼ xc;L − xc;R
needs to be greater than zero. Using a trigonometric

L d

(a)

(b)

(c)

FIG. 3 (color online). (a) The experimental onset of 2- and
3-tangles (filled circles) with horizontal error bars as a function
of the worm length-distance ratio. The vertical lines are the
theoretical crossover predictions ðL=dÞ2 ¼ 0.95� 0.10 and
ðL=dÞ3 ¼ 2.0� 0.3. (b),(c) Histograms of the entanglement
lifetimes of several worm pairs far apart [L=d ¼ 1.0� 0.2,
(b)] and close together [L=d ¼ 5.7� 2.8, (c)]. The count has
been normalized with the total number of tangles. The vertical
dashed lines indicate the peak position of the other histogram.
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identity, xc;L − xc;R ¼ 2Ac cos½ð2tþ ϕÞ=2� sinðϕ=2Þ − d.
Maximizing this difference with respect to time yields
Δ ¼ 2Ac sinðϕ=2Þ − d ≥ 0 and, thus,

ϕ ≥ ϕc ¼ 2sin−1
�

d
2Ac

�
: ð2Þ

This is the critical phase shift needed to form a tangle at a
specific L=d ratio. In other words, the farther apart the
worms are, the more out of phase they have to swim in
order to intersect and the smaller is the range of phase shifts
which yield intersections.
Although the worms have very similar average frequen-

cies (f ¼ 2.1� 0.2 Hz), small temporal variations in this
quantity allow the worms to explore all relative phase
shifts, as exemplified in Fig. 2(b). Since the worms explore
all relative phase shifts over time, and since a certain
fraction of intersection events between the worm ends will
lead to entanglements, it is reasonable to hypothesize that
the entanglement probability will be proportional to the
fraction of relative phase shifts which contain an inter-
section at the separation distance d. However, we also
expect that entanglement events will be more likely to
occur if the worm heads have more space (and time) to
wrap around each other’s bodies. Thus, we make the
first-order assumption that the probability of entanglements
at a given separation distance is proportional to the
fraction of relative phase shifts which contain an inter-
section but where each phase shift is linearly weighted
by the maximum separation between the worm heads,
giving

p ∝
Z

π

ϕc

Δ
L
dϕ; ð3Þ

where L is used to nondimensionalize the weighting.
Evaluating this integral and substituting Ac ¼ kcL gives

p ∝ 2kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

�
d
kcL

�
2

s
−
d
L

�
π − 2sin−1

�
d

2kcL

��
; ð4Þ

which shows how the entanglement probability scales with
the worm length-distance ratio.
The number of worm entanglements were counted, and

the experimental entanglement probability was calculated
as the ratio between the number of entanglements and
entanglement attempts (the sum of the number of swim-
ming cycles and successful tangling events). The proba-
bility is plotted as a function of L=d in Fig. 4 for all
experiments performed with different worm pairs at differ-
ent distances. The entanglement probability increases
sharply at a worm separation close to one worm length.
Equation (4) is successfully fit to the data, and the model
is clearly in excellent agreement with the experimental
observations. Two fitting parameters were used to fit the

data in Fig. 4. The first is a compressing factor
(0.11� 0.03) in the y direction, which corresponds to
the proportionality prefactor of Eq. (4). Any mechanosen-
sory interactions present between the worms would enter
into this factor. The second fitting parameter defines the
horizontal shift of the theoretical curve and is given by
kc ¼ 0.64� 0.10. Comparing this value to that derivable
from the helix model giving Ac;helix=L ¼ k − L2=L ¼
0.53� 0.05, we find the two models to be, within error,
in excellent agreement.
To form a tangle in our experiments, the worms were

forced to deviate from their otherwise planar swimming
motion to form a three-dimensional helix. If significant
out-of-plane swimming occurred, the entanglement prob-
ability was seen to vastly decrease, as easily explained by
our geometric model. The clear entanglement difference
between the nearly 2D versus a complete 3D motion could,
thus, be a significant factor in, e.g., how arrays of cilia
avoid tangling due to their sophisticated 3D motion [51].
The aspect ratio of cilia can be as high as L=D ¼ 100
(versus 19 for our worms), where D is the diameter. Since
cilia are typically arranged at distances 0.27–0.4 μm apart
[52], ðL=dÞcilia ¼ 75. The lack of ciliar entanglements is,
thus, surprising when compared to our experimental find-
ings in planar swimming and highlights the importance
of the specific motion patterns used to avoid or achieve a
tangled network. Strong hydrodynamic interactions could
also act to modify ciliar entanglements at close distances.
Hydrodynamic interactions were not discovered between
the worms in our experiments, consistent with the findings
of others [21].
Here we have presented a time-resolved, dynamic study

of the tangling of active stringlike worms. By describing
the system with a simple model based on the overlap
probability of the worm heads during their undulatory
swimming, the critical ratio between the worm length
and distance for any entanglement to be possible was

p

L d

FIG. 4 (color online). The entanglement probability as a
function of L=d. The different markers denote experiments with
different worm pairs. The solid line is the analytical fit of Eq. (4)
to the data.
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quantitatively predicted and shown to be in excellent
agreement with experimental observations. Furthermore,
the entanglement probability was analytically derived and
successfully fit to the data. It is clear that the tangling of the
active strings is far from random but a statistically pre-
dictable process based on the relative motion of their ends.
These experiments provide an interesting model system to
understand the intricate interactions present in active matter
such as cilia and bacterial flagella.
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