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Weyl semimetals (WSMs) constitute a 3D phase with linearly dispersing Weyl excitations at low energy,
which lead to unusual electrodynamic responses and open Fermi arcs on boundaries. We derive a simple
criterion to identify and characterize WSMs in an interacting setting using the exact electronic Green’s
function at zero frequency, which defines a topological Bloch Hamiltonian. We apply this criterion
by numerically analyzing, via cluster and other methods, interacting lattice models with and without
time-reversal symmetry. We identify various mechanisms for how interactions move and renormalize
Weyl fermions. Our methods remain valid in the presence of long-ranged Coulomb repulsion. Finally,
we introduce a WSM-like phase for which our criterion breaks down due to fractionalization: the charge-
carrying Weyl quasiparticles are orthogonal to the electron.
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The emergence of (quasi)relativistic excitations in quan-
tum condensed matter has stimulated much theoretical and
experimental research, especially following the discoveries
of graphene [1,2] and 3D topological insulators [3,4], both
of which host 2D massless Dirac fermions. More recently,
a 3D analog of graphene, the Weyl semimetal (WSM),
has piqued physicists’ curiosity, partially due to its poten-
tial for realization in transition metal oxides with strong
interactions and spin-orbit coupling [5–8], or heterostruc-
tures [9]. Such a phase has stable massless Weyl quasi-
particles, which can be viewed as half-Dirac fermions.
These lead to unique open Fermi arc surface states [5]
and electromagnetic responses [10–18]. Such properties
rely on the topological nature of the Weyl points [19],
which are monopoles of the noninteracting Berry curvature.
As WSMs naturally arise in interacting lattice models
[8,13,14], it is important to characterize them without
relying on free-electron or field-theoretic approaches
[20–23], neither of which is sufficient to provide accurate
predictions for most realistic systems. Moreover, an effi-
cient method for searching for Weyl points in the interact-
ing setting is desired because they generally occur at
incommensurate points in the Brillouin zone (BZ), often
due to spontaneous symmetry breaking.
We provide a simple criterion to identify and characterize

WSMs in the quantum many-body setting based on the
electronic lattice Green’s function. Specifically, we use
an effective Bloch Hamiltonian (dubbed “topological
Hamiltonian” [24]) defined from the zero-frequency
many-body Green’s function, and argue that its eigenstates
retain the Berry phase properties of the Weyl nodes. This
allows for the extraction of the nontrivial surface states [5]
and anomalous quantum Hall (AQH) response [11,12] of

interacting WSMs. We apply our results in conjunction
with cluster perturbation theory [26] to study the physics
of two interacting lattice models for WSMs, unraveling
diverse interaction effects on the renormalization of the
Weyl points. We also discuss the effects of long-range
Coulomb repulsion which marginally destroys the quasi-
particles [27], and argue that our approach remains valid in
that case. Finally, we provide an instance where such
methods break down due to a simple fractionalization into
an orthogonal [28] WSM. Our analysis naturally relates to
previous works that characterized interacting topological
insulators [20,29–35] by means of the many-body Green’s
function and associated Berry curvature, but differs in the
sense that we study gapless systems.
Characterizing interacting Weyl semimetals.—

Noninteracting WSMs have a Fermi surface consisting
of a finite number of points in the BZ, at which 2 bands
meet linearly. Each such Weyl point can be identified with
a hedgehog singularity of the Berry curvature, ∇ × aðkÞ,
i.e., a monopole of this k space “magnetic” field. Here, a is
the Berry connection defined via the occupied Bloch states.
Knowledge of this monopole structure naturally leads to a
description of the unusual open Fermi arc surface states
[5], and AQH response [11,12]. In the presence of inter-
actions that inevitably arise in realistic systems, the above
band structure description no longer applies. However, we
demonstrate that the essential features of the WSM remain
robust, and can be understood in terms of the zero-
frequency Green’s function.
We focus on short range interactions, while the effects of

the long-ranged Coulomb repulsion are discussed towards
the end. The central tool in our analysis is the imaginary-
frequency Green’s function, Gðiω; kÞ. It is a matrix in spin,
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orbital, or sublattice space, and k belongs to the BZ of
the lattice of the interacting system. A key observation is
that one can define a many-body Berry connection AðkÞ,
and associated Berry curvature ∇ ×A, using the zero-
frequency Green’s function. One begins by defining the
so-called topological Hamiltonian,

HtðkÞ ¼ −Gð0; kÞ−1 ¼ HðkÞ þ Σð0; kÞ; ð1Þ

where H is the Bloch Hamiltonian of the noninteracting
system, while Σðiω; kÞ is the exact self-energy matrix. Ht
plays the role of an effective Bloch Hamiltonian: its
eigenstates can be loosely viewed as substitutes of the
Bloch states of the noninteracting system. The many-body
Berry connection can then be introduced in exact analogy
with noninteracting systems: AðkÞ¼−i

P
Rzeroshnkj∇jnki,

where HtðkÞjnki ¼ ~ξnðkÞjnki and f~ξnðkÞg defines the
band structure of Ht. R zero [29] signifies an eigenstate
with ~ξnðkÞ ≤ 0. In the noninteracting limit, R zeros reduce
to occupied states, and A to a. We now argue that Weyl
points of the interacting system can then be identified
with monopoles of ∇ ×A (analogously for higher charge
monopoles [36]). An equivalent but more practical criterion
follows: an interacting system is a WSM if the band
structure of the topological Hamiltonian Ht has Weyl
nodes at the Fermi level, which identify the Weyl nodes
of the interacting system.
To understand the above criterion, let us consider a

noninteracting WSM for which short-ranged interactions
(attractive or repulsive) are adiabatically turned on. The
latter are irrelevant in the renormalization group sense, i.e.,
at low energy, and one thus obtains a Weyl liquid, where
excitations have an infinite lifetime only on the Fermi
surface, i.e., at the Weyl nodes. By adiabacity, the monop-
ole structure of the noninteracting Green’s function cannot
be destroyed in the Weyl liquid. The many-body Berry
connection A captures the monopole of Berry flux [21]
associated with the Weyl quasiparticles. This relates to
Haldane’s statement [11] about using the Berry curvature of
the quasiparticles of a Fermi liquid to determine its AQH
response [which translates to our expression for the latter,
Eq. (2), being valid in that case], as one can approach a Weyl
liquid from its parent Fermi liquid by tuning the doping.
We now support the above arguments by deriving the

AQH response of a WSM in terms of the generalized Berry
curvature A. We proceed by evaluating the many-body
Chern number for 2D surfaces away from the Weyl points
in the BZ [21]. More precisely, we will show that the
anomalous part of the Hall conductivity reads

σab ¼
e2

2πh
ϵabcKc; K ¼

Z

BZ

d3k
2π

∇ ×AðkÞ; ð2Þ

where ϵabc is the Levi-Civita tensor. Equation (2) general-
izes the noninteracting formula [11], and can be collapsed

to Fermi surface data K ¼ P
mqmkm, where km is a Weyl

node of the interacting system, and qm ¼ �1 its monopole
charge. Equation (2) can be deduced by starting with
the frequency-dependent Green’s function. For simplicity,
we consider a fixed kx away from the Fermi surface of
the interacting WSM. It follows that Gðiω; kÞ defines a
gapped 2D Green’s function in the ky;z plane. We can
compute the many-body Chern number associated with G
at fixed kx [37,38]:

CxðkxÞ¼
Z

dωdky;z
24π2

ϵμνρxTrG∂μG−1G∂νG−1G∂ρG−1: ð3Þ

The x component of the anomalous Hall vector is then
the integral over the Chern number Kx ¼

R
dkxCxðkxÞ. We

note that this latter expression agrees with the so-called
Adler-Bell-Jackiw anomaly coefficient of the current
correlator (see Supplemental Material [39]). Now, to
recover Eq. (2), we adiabatically deform the interacting
Green’s function into the topological Green’s function,
Gtðiω;kÞ−1¼ iω−HtðkÞ, via the interpolation gλðiω; kÞ ¼
ð1 − λÞGðiω; kÞ þ λGtðiω; kÞ, 0 ≤ λ ≤ 1. Indeed, for any
slice away from the Fermi surface, the gap of gλ remains
open during the protocol since gλð0; kÞ ¼ Gð0; kÞ for all λ.
Further, gλðiω; kÞ does not have zero eigenvalues [30].
Thus, the many-body Chern number cannot change as λ
varies from 0 to 1, being a topological index, and we can
use gλ¼1 ¼ Gtðiω; kÞ to compute Cx. The frequency inte-
gral then yields Eq. (2) [39].
Using topological Hamiltonians numerically.—We

study two lattice models of interacting WSMs numerically
to show the usefulness of the topological Hamiltonian
approach. We identify and explain the motion and renorm-
alization of the Weyl points as a function of the interaction
strength. We consider Hubbard models

H ¼ H0 þU
X

r

nr;↑nr;↓ − μ
X

r;σ

nr;σ; ð4Þ

where H0 is a tight-binding hopping Hamiltonian of spin-
1=2 electrons, which are created at site r by c†r;σ, and their
number density per spin projection is nr;σ ¼ c†r;σcr;σ . U is
the Hubbard interaction parameter; we consider both the
attractive and repulsive cases. We study models that are
defined on the cubic lattice, have particle-hole symmetry
and are WSMs at the noninteracting level, and fix the
chemical potential at the nodes, μ ¼ U=2.
Model I breaks time reversal and is defined by [12]

H0 ¼
X

k

c†k½f2tðcos kx − cos k0Þ

þmð2 − cos ky − cos kzÞgσx þ 2t sin kyσy

þ 2t sin kzσz�ck; ð5Þ
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where the spacing of the cubic lattice has been set to unity,
and the fermion operators are vectors in spin space. The
Pauli matrices σa act on the latter. Below we set t ¼ 1.
Depending on the parameters k0 and m, H0 can have 2, 6,
or 8 Weyl nodes. We focus on the regime where it only has
2 nodes, located on the BZ boundary at k ¼ �ðk0; 0; 0Þ.
See Fig. 1(a) for theU ¼ 0 band structure (recall that in that
limitHt ¼ H). The anomalous Hall vector is thus given by
K ¼ 2k0x̂, i.e., σyz ¼ ðe2=2πhÞ2k0.
We now turn to the study of the interacting Hamiltonian

using cluster perturbation theory [26] (CPT). This method,
which is related to dynamical mean field theory, allows
for an efficient numerical analysis. In essence, one first
decomposes the periodic system into clusters with Nc sites.
Exact diagonalization is used to obtain the exact cluster
Green’s function. The Green’s function of the lattice system
is then obtained via strong-coupling perturbation theory.
CPT becomes exact in the limit U → 0 and at strong
coupling, U → ∞; it is controlled in the sense that con-
vergence can be monitored with increasing the cluster size.
We emphasize that it is not perturbative in U. See
Supplemental Material [39] for more details.
CPT allows a direct evaluation of the topological

Hamiltonian Ht, so that we can easily track the location
of the Weyl points of the interacting system as a function of
U. The results we present are for clusters of size Nc ¼ 23,
at which point reasonable convergence with Nc has been

achieved [39]. A further increase ofNc would not affect our
conclusions. We setm ¼ 3=2, and k0 ¼ 3π=8. The positive
band of the topological Hamiltonian is shown in Fig. 1(a)
for a cut through the BZ and for different U values. With
increasing U > 0, the Weyl points move to larger magni-
tude of the wave vector. This directly corresponds to an
increase of the Hall conductivity σyz, Eq. (2), as shown in
Fig. 1(b). The red circles are evaluated numerically with
CPT. We also show the analytic strong coupling result
(perturbative in 1=U [39]), i.e., for single-site clusters,
which captures the overall trend. For attractive interactions
U < 0, the trend is opposite: the Weyl points move towards
k ¼ 0. One can understand this heuristically: a positive
(negative)U enhances (reduces) the ferromagnetic moment
hc†rσxcri (already present at U ¼ 0), thus, enhancing
(reducing) the Hall conductivity. A crude estimate of this
effect can be obtained using mean field theory [39] as
shown in Fig. 1(b).
In studying the Weyl points and AQH response of the

many-body system, the topological Hamiltonian allowed
a streamlined analysis by circumventing the need for the
full frequency-dependent Green’s function. We now dis-
cuss some of the properties arising from the latter but
not captured by Ht. The spectral function Aðω; kÞ ¼
−Tr ImGRðωþ i0þ; kÞ=π obtained using CPT for U ≥ 0
is shown in Fig. 2. The linearly dispersing Weyl modes can
clearly be seen. In the interactingWSM only the excitations
at the Weyl points remain sharp. The scattering rate of an
excitation with momentum exactly at a Weyl point and with
small frequency vanishes like jωj5, as can be obtained
perturbatively [39]. This is smaller than the Fermi liquid
result ω2, owing to the vanishing density of states at the
Fermi level in a WSM. As in a FL, the weight of the
quasiparticles Z will be reduced with increasing inter-
actions. (When the Weyl nodes are related by symmetry
they share the same Z, which is the case in this work.) The
result is plotted in Fig. 2(c), and as expected behaves as
Z ≈ 1 − αU2 at small U, α > 0.
We introduce a new model which, in contrast to model I,

preserves TRS but not inversion, and as such is a repre-
sentative of the second family of WSMs. We show that the
influence of interactions on the motion of the Weyl points
has an altogether different physical origin as compared to
model I, but a connection can be made by interchanging
the role of magnetic and charge orders. The tight-binding
Hamiltonian of model II reads

H0 ¼ 2t
X

k;b¼x;y;z

c†kσb sin kbck þ ϵHcdw; ð6Þ

where Hcdw corresponds to a ðπ; π; 0Þ charge density wave
(CDW) on the cubic lattice where the chemical potential
is staggered by �ϵ in a checkerboard fashion in the xy
plane. When ϵ ¼ 0, we do not expect the 8 Weyl points to
move under the effect of interactions (modulo possible

FIG. 1 (color online). (a) Positive band of the topological
Hamiltonian Ht ¼ −Gð0; kÞ−1 of model I with varying inter-
action strengthU along a cut through the BZ. (b) The Weyl points
move with varying U, altering the Hall conductivity σyz. Filled
circles come from the numerical simulations. σyz in the strong
(weak) coupling limit is shown [dashed (dotted) line]. The
numerical results are obtained with cluster perturbation theory
for a cluster of size Nc ¼ 23; the single-particle Hamiltonian has
m ¼ 3=2, k0 ¼ 3π=8.
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instabilities [43] beyond a criticalU) because they are located
at special high-symmetry k points. The CPT calculation
corroborates this. We thus need to turn on a finite ϵ to get
nontrivial evolution. At U ¼ 0, we find a total of 16 Weyl
points when jϵj < 1, setting t ¼ 1. (Going from 8 to 16Weyl
points as ϵ is turned on does not violate the indivisible
nature ofWeyl points since theCDWchanges theBZ.)When
ϵ ¼ 0, four Weyl points occur at kz ¼ 0, while four other
ones at π=a, where we have reinstated the spacing of the
original cubic lattice a. When 0 < ϵ < 1, the eight nodes
at kz ¼ 0 “split” to ones at kza ¼ �sin−1ðϵ=2Þ, similarly for
kz ¼ π=a. A finiteUmoves the eight nodes nearest to kz ¼ 0
towards (away) from kz ¼ 0 since a repulsive (attractive)
U disfavors (favors) the charge imbalance. This is confirmed
by Fig. 3, which shows Ht obtained using CPT.
Long-ranged Coulomb interaction.—We have so far

limited our discussion to short-ranged interactions.
However, in an electronic WSM the screening of the
Coulomb interaction is weak due to the vanishing density
of states at the Fermi energy. Using RPA, it was shown [27]
that for linearly dispersing electrons in three dimensions
interacting via an instantaneous Coulomb 1=r repulsion,
the quasiparticle at the node k0 is marginally destroyed:
ImΣRðωþ i0þ; k0Þ ∼ jωj, resulting in a “marginal Weyl
liquid.” Notwithstanding, this does not alter the fundamen-
tal Berry curvature structure around the (marginal)
Weyl point. Indeed, let us consider the low-energy descrip-
tion near such an isotropic point: HtðkÞ ¼ −Gð0; kÞ−1 ¼
fðkÞk · σ, where f ¼ 1þ λ lnðΛ=kÞ [27]. Crucially, the

Berry curvature ∇ ×A is independent of the overall real
renormalization factor f as it measures the complex phase
of the G eigenstates as they are parallel transported in the
BZ. Thus, the Berry flux through a small sphere surround-
ing the Weyl point will measure the same monopole charge
as when f ≡ 1. An analogous statement can be made about
the π Berry phase of the Dirac points of graphene in the
presence of Coulomb repulsion.
Orthogonal Weyl semimetals.—We present a case where

the above characterization of a Weyl-like liquid using Ht
breaks down. The idea being that particular interactions can
induce a phase where the charge carrying quasiparticles
have the properties of a WSM but are orthogonal to the
electron due to fractionalization. Such a phase admits a
simple and stable slave-particle description: the electron
operator cr;σ can be written as the product fr;στxr of a slave
fermion fr;σ carrying the charge (and spin), and a slave
Ising pseudospin τxr . A Z2 gauge redundancy emerges
because of the decomposition. In terms of these slave
operators, a WSM results when the f fermions form a
WSM while the pseudospins are ordered. However, if they
become disordered, an orthogonal WSM results for the
electrons: The f fermions constitute a Weyl liquid since the
pseudospins and Z2 gauge field are gapped, but they are
orthogonal to the electrons (the electronic quasiparticle
weight vanishes). The resulting orthogonal WSM is a
cousin phase of the orthogonal metal [28]. It has qualita-
tively the same thermodynamic and transport [44,45]
properties as a Weyl liquid: T3 heat capacity, quantum
oscillations [17], and AQH response. However, the electron
Green’s function G shows a hard “Mott” gap, thus no Weyl
points. In this sense, the AQH response can no longer
be obtained usingHt ¼ −Gð0; kÞ−1. Instead, one has to use
the f-fermion Green’s function. We thus have an instance
where the adiabaticity relation to bare electrons breaks
down, but where the topological Hamiltonian approach
can be adapted by identifying the low-energy excitations.
A similar situation will arise for other orthogonal states,
such as orthogonal topological insulators [46].
Conclusion.—We have shown how to characterize inter-

acting WSMs via the many-body Berry curvature (derived
from the zero-frequency Green’s function) allowing the
identification of the monopole structure of the Weyl points.

FIG. 2 (color online). Density plot of the single particle spectral function Aðω; kÞ for (a)U ¼ 1, (b)U ¼ 3 obtained via CPT, shown on
a logarithmic color scale. The noninteracting band structure (solid blue line) is the same as in Fig. 1. (c) Dependence of the residue Z of
the Weyl quasiparticles on U; it is well approximated by a cubic polynomial.

FIG. 3 (color online). Positive band of the topological
Hamiltonian Ht of model II (ϵ ¼ 0.5) with varying Hubbard
U along a cut through the BZ. U ¼ 0 is the noninteracting band
structure.
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We have argued that the existence of quasiparticles is not
necessary in this; for example, the latter are marginally
destroyed in a WSM with long-ranged Coulomb repulsion.
As a natural extension, we note that Ht can also be used to
efficiently identify Weyl nodes lying away from the Fermi
surface, for example, in a doped Weyl semimetal, which
proves much simpler than resolving the full spectral
function. In closing, our work shows the importance of
the Berry connection derived from the Green’s function
in the study of correlated fermions, especially their robust
(quasi)topological features, in the gapless regime. We have
illustrated that these ideas can be implemented numerically
to study realistic models.
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