
Localization of Low-Frequency Oscillations in Single-Walled Carbon Nanotubes

V. V. Smirnov,* D. S. Shepelev, and L. I. Manevitch
Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119991 Moscow, Russia

(Received 30 September 2013; revised manuscript received 25 November 2013; published 23 September 2014)

In the framework of the continuum shell theory, we analytically predict a new phenomenon: the
weak localization of optical low-frequency oscillations in carbon nanotubes. We clarify the origin of the
localization by means of the concept of the limiting phase trajectory and confirm the obtained analytical
results by molecular dynamics simulations of simply supported carbon nanotubes. The performed analysis
contributes to the new universal approach to the treatment of nonstationary resonant processes.
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Advances in nanoscience open the possibilities for the
experimental realization of some nonlinear dynamical
phenomena earlier considered only in model systems
[1–4]. Examination of carbon nanotubes (CNTs), graphene
nanoribbons, and nanowires allows us to observe these
phenomena [5–7] as well as to develop new supersmall and
ultrafast devices [8–11]. The nano-objects do not contain
dislocations and plasticity is absent. Therefore, one should
expect that the results of molecular dynamics (MD)
simulations (with force fields obtained in quantum chemi-
cal calculations) will conform with the experiment.
In linear systems, the processes of heat or energy transfer

are traditionally associated with phonons as normal modes
of the respective dynamical systems [12,13]. In nonlinear
systems, the main competitors for the energy transfer are
localized excitations—solitons and breathers [14,15]. To
minimize the spatial spreading of a phonon packet, it is
necessary that the normal modes in the packet should have
close frequencies. However, in the presence of nonlinearity,
the resonant interactions between these modes will take
place. Below we will show that the effect of the nonlinear
resonant phonon interactions in such a classical system as a
carbon nanotube with a finite length results in nontrivial
consequences such as the low-frequency energy localiza-
tion and/or energy exchange. The energy localization
corresponds to a breather in an infinite system, while
the energy exchange does not have a counterpart in an
infinite system.
Recently, we proposed [16] an analogy between the

low-frequency shell-like vibrations of a single-walled CNT
and the nonlinear dynamics of a one-dimensional oscillator
chain (see, also, the Supplemental Material [17]). It was
also shown that intermodal interaction under conditions of
1∶1 resonance can lead (under some specific conditions) to
intensive energy exchange between different parts of the
system or to the spatial localization of the energy [18–20].
However, the realistic CNT model turns out to be much
more complicated.
In the CNT spectrum, there are two optical-type

branches that are interesting from the viewpoint of mode

interaction. The first branch is the well-known radial
breathing mode (RBM) (azimuthal wave number n ¼ 0)
corresponding to uniform radial expansion compression.
The second mode (n ¼ 2) describes deviation of the CNT
cross section from a circuit (circumferential flexure mode,
CFM) [21,22]. In spite of possible nonlinear coupling of
vibrations belonging to different oscillation branches [23],
the interaction between two low-frequency CF modes can
be predominant for a certain set of the CNT’s parameters
due to the proximity of the frequencies.
Let us consider oscillations corresponding to the CFM

branch. The displacement field of carbon atoms is shown in
Fig. 1(a). It is reasonable to assume that on this branch the
ring and shear deformations are small, and, therefore, the
shape of the CNT transversal cross section changes without
an elongation of the contour line. In such a case, the
energies of the tangential and longitudinal deformations
can be neglected and the corresponding components of the
displacements can be expressed via the radial component.
Some details of the analysis of the CNT vibrations are
presented in the Supplemental Material [17].
As we already mentioned, the spectrum branch of the

CFM is an optical-type branch, and the value of the gap is
determined by the own flexural rigidity of the CNT
transversal cross section. Therefore, regardless of the type
of boundary conditions, there is a crowding of the

(a) (b)

FIG. 1 (color online). (a) Displacements of carbon atoms in
CFM. The arrows show directions and relative values of the
atomic displacements. (b) Energy distribution along the CNT
when a certain combination [ψ2, see Eq. (4)] of the first two
modes on the CFM branch is excited; dark blue zone (low
energy), red zone (high energy).
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eigenvalues near the low-frequency (long-wave) boundary.
We estimated that if the aspect ratio of the CNTexceeds 15,
the distance between the frequencies of the first and the
second modes is small enough, and its value is approx-
imately twice less than the distance between the second and
the third modes. This allows one to restrict the analysis to
the two-mode approximation.
One can show that the nonlinear interaction of the low-

frequency normal modes in the framework of two-mode
approximation is described by a system of equations, the
structure of which is general for various systems with
discrete spectrum—from a pair of weakly bounded anhar-
monic oscillators to nonlinear lattices of a finite size. The
derivation procedure of these equations is described in
Ref. [18]. For the low-frequency CNT dynamics, these
equations can be written as follows:

i
∂χ1
∂τ þ 2a1jχ1j2χ1 þ a3jχ2j2χ1 þ 2a4χ22χ

�
1 ¼ 0;

i
∂χ2
∂τ þ ω1χ2 þ a3jχ2j2χ1 þ 2a2jχ2j2χ2 þ 2a4χ21χ

�
2 ¼ 0;

ð1Þ

where χ1 and χ2 are complex amplitudes of the modes
in the leading order, and the asterisk denotes complex
conjugation.
The coefficients aj are determined by geometry of the

CNT and by its Poisson ratio (see the Supplemental
Material [17]), and ω1 is the natural frequency of the
first mode. In Eqs. (1), the variable τ is a slow time
(τ ¼ ε2t), and the small parameter ε is determined by the
relative difference between the modal frequencies:
ε ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðω2 − ω1Þ=ω1

p

. It is very important that the complex
amplitudes χj depend only on the slow time. Equations (1)
are characteristic for resonance interaction of two objects.
One can show that the behavior of the system depends
drastically on the relation between parameters a1, a2, a3,
and a4. The nonlinear terms with coefficients a1, a2, and a3
are responsible for frequency shifts, while the last term
with factor a4 provides nonlinear interaction between the
modes under consideration.
Equations (1) correspond to the Hamiltonian

H ¼ ω1jχ2j2 þ a1jχ1j4 þ a2jχ2j4 þ a3jχ1j2jχ2j2
þ a4ðχ21χ�22 þ χ�21 χ22Þ ð2Þ

of quite a general form describing a nonlinear system
of two weakly coupled components, accounting for the
nonlinear interaction between the components up to
fourth order.
Besides the obvious energy integral (2), Eqs. (1) possess

another integral (occupation number integral in quantum-
mechanical terminology):

X ¼ jχ1j2 þ jχ2j2: ð3Þ

This parameter characterizes the total excitation of the
system. The analysis of Eqs. (1) shows that the normal
modes under resonance conditions being strongly inter-
active become inadequate for the description of the non-
stationary behavior. This description should use weakly
interacting objects. As it turns out, in the system under
consideration, this role can be played by such combinations
of the nonlinear normal modes (NNMs) which represent
excitations of different parts of the CNT. Namely,

ψ1 ¼
1
ffiffiffi

2
p ðχ1 þ χ2Þ; ψ2 ¼

1
ffiffiffi

2
p ðχ1 − χ2Þ: ð4Þ

Indeed, considering the distribution of energy along the
nanotube, one can see that these linear combinations of
normal modes provide predominant energy concentration
in the left or right part of the CNT, while the other part of
the CNT has much lower energy density [Fig. 1(b)].
Because of the small difference between the frequencies
of the modes χ1 and χ2, the two parts of the CNT
demonstrate some coherent behavior similar to beating
in the system of two weakly coupled oscillators. Therefore,
we can consider these regions as new large-scale elemen-
tary units of the system, “effective particles” introduced for
discrete nonlinear lattices in Ref. [18].
The existence of the integral of motion (3) allows us to

reduce the phase space of the system up to two dimensions.
Now we can introduce real variables a priori conserving
the integral (3):

ψ1 ¼
ffiffiffiffi

X
p

cosðθÞe−iδ=2; ψ2 ¼
ffiffiffiffi

X
p

sinðθÞeiδ=2: ð5Þ

In the reduced phase space, the first variable (θ) character-
izes the relative amplitudes of the effective particles ψ1 and
ψ2, and the second one (δ) is the phase shift between them.
Now we can rewrite Hamiltonian (2) in terms of “angle”

variables θ and δ:

H ¼ X
16

f8ω1ð1 − cos δ sin 2θÞ
þ X½4a1ðcos δ sin 2θ þ 1Þ2 þ 4a2ðcos δ sin 2θ − 1Þ2
þ a3ð2cos2δ cos 4θ − cos 2δþ 3Þ
þ 2a4ð2cos2δ − ðcos 2δ − 3Þ cos 4θÞ�g: ð6Þ

A typical phase portrait of a system with Hamiltonian (6)
for small excitation level X is shown in Fig. 2(a). Two
steady states with θ ¼ π=4 and δ ¼ 0 and δ ¼ π correspond
to normal modes χ1 and χ2. The trajectories surrounding
these stationary points describe the dynamics of effective
particles; i.e., they show the evolution of variables ψ1 and
ψ2. The values θ ¼ 0 and θ ¼ π=2 correspond to energy
concentration on one of the effective particles. When these
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values are reached, the energy distribution along the CNT is
the most nonuniform. These states belong to the phase
trajectory maximally distant from the stationary points χ1
and χ2. Consequently, the motion along the trajectory is
accompanied with the energy transfer from one part of the
CNT to another one. Such a trajectory has been termed as
the limiting phase trajectory (LPT) because it encircles the
domain of attraction of the stationary points at maximal
distance [18–20]. The motion along a LPT is similar to
beats in a system of two oscillators [24], and here the parts
of the CNT play the role of effective particles. This process
is illustrated in Fig. 2(b), where the energy distribution
along the CNT during MD simulation of the zigzag CNT
vibrations is shown. We used the following parameters of
the CNT: length L ¼ 25.4 nm, radius R ¼ 0.79 nm (the
aspect ratio λ ¼ 32), and the boundary conditions corre-
sponded to the simply supported nanotube. (Some details
of the MD simulation are described in the Supplemental
Material [17].) The initial temperature of the nanotube
was 1.0 K, and the initial velocity field corresponded to the
linear combination of two low-frequency modes. To show
the energy in Fig. 2(b), the considered CNT was separated
into 60 “elementary rings,” and each of them contained
40 carbon atoms.
What occurs when the parameter X grows? Figures 3(a)

and 3(b) show two phase portraits corresponding to larger
values of X. We see that the topology of these portraits
essentially differs from that in Fig. 2(a). Namely, besides
the stationary points χ1 and χ2, an additional pair of steady
states arises as a result of instability of the lowest-frequency
normal mode at the excitation level

X ¼ Xu ¼ ω1=ð2a1 − a3 − 2a4Þ: ð7Þ

The new steady states, as long as they are close to the
“parent” normal mode, represent only nonlinear normal
modes with relatively small energy excess in one part of the
CNT. Most importantly, the possibility of the complete
energy exchange between the CNT parts is preserved. With

the growth of the parameter X, the new stationary states
depart further from the original normal mode, and, con-
sequently, the separatrix loop expands. At the point

X ¼ Xloc ¼ 2ω1=ð3a1 − a2 − a3 − 2a4Þ; ð8Þ

the separatrix merges with the LPT. This threshold signifies
the complete energy localization, since any path starting
at the upper half of the phase plane cannot reach the bottom
half and vice versa.
The instability threshold for the CNTwith the considered

aspect ratio is Xu ¼ 0.08, and the localization threshold is
Xloc ¼ 0.17. The energy distributions along the z axis of the
CNTobtained in the MD simulation of the LPTs are shown
in Figs. 3(c) and 3(d). One can see that near the localization
threshold, the beating shown in Fig. 2(b) transforms into a
long-time flow of the energy from one part of the CNT to
another [Fig. 3(c)]. Figure 3(d) shows the energy distri-
bution along the CNT at the excitation level significantly
exceeding the localization threshold. One can see that no
energy flow along the CNT occurs. Although the energy
profile during the simulation differs significantly from the
initial one, its location preserves.
We saw that the instability of the band-edge optical

mode of the CNT vibrations is a preliminary condition of
energy localization in some part of the CNT. However, the
energy capture in one of the CNT parts can be achieved if
the excitation level exceeds the specified threshold corre-
sponding to merging of two trajectories—the LPT and the
separatrix. Simultaneously, between the two LPTs, a set of

FIG. 2 (color online). (a) Phase portrait of the system (6) with a
low level of excitation X ¼ 0.05. (b) The energy distribution
along the CNT with aspect ratio λ ¼ 32 in the MD simulation of
the LPT. The level of excitation corresponds to the phase portrait
in (a). Energy is measured in kelvin and time—in picoseconds.

FIG. 3 (color online). Phase portraits (a),(b) of the system (6)
and energy distributions along the CNT in the MD simulations
of the LPTs (c),(d) at large excitation levels X for CNTs with
aspect ratio λ ¼ 32. Left panel: X ¼ 0.15. Right panel: X ¼ 0.25.
Energy is measured in kelvin and time—in picoseconds.
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trajectories passing all the values of the phase shift δ is
created. The energy capture does not mean the generation
of strongly localized excitations whose formation requires
participation of additional modes of the spectrum. The two-
mode approximation gives the “weak” energy localization,
becoming strong enough if the excitation level grows and
additional modes get into the resonant conditions.
An important point is that the phenomenon of energy

localization considered above is a common peculiarity of
the systems possessing optical-type branches of a spectrum.
In particular, one can expect that the RBM can also
manifest the energy capture in effective particles. The only
difference is in the type of localization. Because we assume
“hard” nonlinearity in the RBM branch, we should expect
a “dark-type” localized solution in contrast with the CFM
branch, where nonlinearity is “soft.” We hope that these
processes can be observed experimentally.
Finally, we should note that the discussed nonlinear

dynamical phenomena are peculiar to systems with a
nonequidistant discrete spectrum. Therefore, the analysis
based on the LPT concept is appropriate for the wide class
of nano-objects. It is also important that the dynamical
behavior considered above can exist at either the low- or
high-frequency side of the spectrum. These nonlinear
processes may substantially affect thermal and electrical
transport in nanotubes, nanoribbons, and nanowires.
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