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We create supercurrents in annular two-dimensional Bose gases through a temperature quench of the
normal-to-superfluid phase transition. We detect the magnitude and the direction of these supercurrents by
measuring spiral patterns resulting from the interference of the cloud with a central reference disk. These
measurements demonstrate the stochastic nature of the supercurrents. We further measure their distribution
for different quench times and compare it with predictions based on the Kibble-Zurek mechanism.
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Fluids in annular geometry are ideally suited to inves-
tigate the role of topological numbers in quantum mechan-
ics. The phase winding of the macroscopic wave function
around the annulus must be a multiple of 2π, ensuring the
quantization of the circulation of the fluid velocity. The
resulting supercurrents have been observed in superfluid
systems such as superconductors [1], liquid helium [2], and
atomic gases [3,4]. Studying these currents is crucial for the
understanding of quantum fluids as well as for realizing
sensitive detectors like magnetometers [5] and rotation
sensors [6].
Supercurrents in annular atomic Bose-Einstein conden-

sates (BECs) are usually created in a deterministic way by
using laser beams to impart angular momentum on the
atoms [3,4,7] or by rotating a weak link along the annulus
[8]. Supercurrents can also have a stochastic origin. They
may result from thermal fluctuations or appear as topo-
logical defects following a rapid quench of the system. The
latter mechanism was put forward by Kibble and Zurek
(KZ), who studied the phase patterns that emerge in a fluid,
when it undergoes a fast crossing of a phase transition
point [9,10].
The KZ mechanism has been studied in several types of

systems such as liquid crystals [11], helium [12,13], ion
chains [14,15], superconducting loops [16], and BECs
[17–19]. For a superfluid confined in a ring geometry,
which is the configuration originally considered by Zurek
[9], the frozen phase of the wave function may lead to a
supercurrent of charge q, i.e., a 2πq phase winding along
the ring. In this Letter, we study a setup realizing this
gedanken experiment using a quasi-two-dimensional (2D)
Bose gas trapped in an annular geometry. For each
realization of the experiment, we use matter-wave inter-
ference between this annulus and a central disk acting as a
phase reference, to measure the charge as well as the
direction of the random supercurrent [20].

Our experiments are performed with a Bose gas of 87Rb
atoms. Along the vertical (z) direction, the gas is confined
using a harmonic potential with frequency ωz=2π ¼
370 Hz [Fig. 1(a)] (Supplemental Material [21]). In the
horizontal (xy) plane, the atoms are trapped in the dark
regions of a “box-potential” beam, engineered using an
intensity mask located in a plane optically conjugated to the
atom cloud [27]. We use a targetlike mask, consisting of a
disk of radius R0 ¼ 4.5 μm surrounded by a ring of inner
(respective outer) radius of Rin ¼ 9 μm (respective
Rout ¼ 15 μm) [Fig. 1(b)].
The typical time sequence for preparing the gas starts

by loading a gas with a three-dimensional (3D) phase-
space density ≈ 2.4 slightly below the condensation
threshold [29] with the box-potential beam at its maximal
power. Then we linearly lower this power by a factor ∼ 50
in a time tevap to evaporatively cool the atomic cloud and
cross the superfluid transition [30]. Last, we keep the
atoms at a constant box-potential depth during a time
thold. The final temperature is ∼10 nKwith similar surface
densities in the ring and the disk: ρ ∼ 80 μm−2. The
typical interaction energy per atom is Eint=kB ≈ 8 nK,
and the gas is marginally quasi-2D with kBT, Eint ∼ ℏωz.
These parameters correspond to a large 2D phase-space
density D ¼ ρλ2 ≥ 100 so that the gas is deeply in the
superfluid regime at the end of the evaporation ramp
(λ ¼ ½2πℏ2=ðmkBTÞ�1=2 is the thermal wavelength and m
the mass of the 87Rb atom).
We use matter-wave interference to probe the relative

phase distribution between the cloud in the central disk and
the one in the ring. We abruptly switch off the box potential
while keeping the confinement along the z direction. The
clouds experience a hydrodynamical expansion during
which the initial interaction energy is converted into kinetic
energy. After 7 ms of expansion, we record the interference
pattern by imaging the atomic gas along the vertical
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direction. Typical interference patterns are shown in Fig. 2.
Most of them consist in concentric rings, as expected for a
quasiuniform phase distribution in the disk and the annulus.
However we also observe a significant fraction of spiral
patterns, revealing the presence of a phase winding in the
wave function of one of the two clouds.
We developed an automatized procedure to analyze

these patterns, which reconstructs the phase ϕðθÞ of the
fringes along a line of azimuthal angle θ (see the
Supplemental Material [21]). From the accumulated
phase Δϕ as the angle θ varies from 0 to 2π, we associate
to each pattern a winding number nwind ¼ Δϕ=2π, which
is a positive, null, or negative integer. This number is
recorded for many realizations of the same experimental
sequence. Examples of the probability distribution of
nwind are shown in Figs. 3(a) and 3(b). The measured
histograms are compatible with a zero mean value [31].
For example, if we use all the data presented in Figs. 3(c)
and 3(d) we find hnwindi ¼ 0.002ð20Þ. This confirms the
stochastic nature of the mechanism at the origin of this
phase winding.
The first question that arises is the origin of the observed

phase winding, which can be due either to a vortex in the

central disk or to a quantized persistent current in the outer
ring. We can experimentally eliminate the first possibility
by noticing that when doing a 3D ballistic expansion (by
switching off both the box-potential beam and the confin-
ing beam in the z direction) we never observe any vortex
signature in the small disk of radius R0 ¼ 4.5 μm. By
contrast, in larger structures such as the square represented
in Fig. 1(b), we can detect deep density holes revealing the
presence of vortices [32]. Hence, we conclude that the
spiral interference patterns of Fig. 2 reveal the presence of a
supercurrent in the annulus, whose charge and orientation
correspond to the modulus and sign of the winding number
nwind. The lifetime of this supercurrent is similar to the
cloud lifetime [see Fig. 3(c)].
We now discuss the origin of the observed supercurrents,

which can be either thermal excitations or result from the
quench cooling. If these currents had a thermal origin, their
probability of occurrence would be given by the Boltzmann
law pðnwindÞ ∝ exp ½−EðnwindÞ=kBT�, where the (kinetic)
energy of the supercurrent is

EðnwindÞ ¼ n2wind
πℏ2ρ

m
ln ðRout=RinÞ: ð1Þ
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FIG. 2 (color online). Experimental interference patterns.
Examples of interference patterns after expansion in the 2D
plane, along with contrast-amplified pictures; (a) without phase
winding, (b) with phase winding −2π, (c) with phase winding
þ2π, (d) with phase winding þ4π.

(b)

(a)

FIG. 1 (color online). Production of boxlike potentials using an
intensity mask. (a) Along the vertical direction, atoms are
confined by a laser beam with an intensity node in the plane
z ¼ 0, which is shaped using a phase plate (π phase shift between
the upper and lower halves of the phase plate). In plane, atoms are
trapped in boxlike potentials created by imaging an intensity
mask onto the atomic plane. (b) In situ images of uniform gases in
the square and target potentials.
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This leads to

pðnwindÞ ∝ ðRin=RoutÞn2windD=2; ð2Þ

which is negligible for nwind ≠ 0 for our large phase space
densities D ≥ 100, in clear disagreement with the typical
20%–50% of pictures showing phase winding. Note that
the probability for a vortex to appear in the central disk as a
thermal excitation is even smaller than that of Eq. (2)
because Rin and Rout should be replaced respectively by the
healing length (≲ 0.5 μm) and R0.
To check that the quench cooling is indeed responsible

for the formation of these supercurrents, we study the
variation of hjnwindji for evaporation times spanning two
orders of magnitude. The comparison between the results
for a slow quench [Fig. 3(a)] and a fast quench [Fig. 3(b)]
show that the latter, indeed, increases the probability of
occurrence of a supercurrent, as expected for the KZ
mechanism [9,10]. We summarize in Fig. 3(d) the exper-
imental variation of hjnwindji with tevap and find that it

increases from 0.2 (tevap ¼ 2 s) to 0.6 (tevap ¼ 0.025 s). A
power-law fit to the data, inspired by the prediction for the
KZ mechanism, leads to hjnwindji ∝ t−αevap with α ¼ 0.19ð6Þ.
To interpret our results, we have developed a simple one-

dimensional (1D) model following the KZ scenario pre-
sented in Refs. [9,33]. We consider a 1D ring of perimeter
L, and we assume that, when the normal-to-superfluid
transition is crossed, N domains of uniform phase ϕj, j ¼
1;…; N are created. Each run of the experiment is modeled
by a set fϕjg, where the phases ϕj are independent random
variables drawn in ð−π; π� (with ϕ1 ¼ 0 by convention).
For each set of fϕjg, we calculate the total phase variation
along the ring Φ ¼ P

jϕj and define nwind as the nearest
integer to Φ=2π. We then average over many draws of the
set fϕjg. Our experimental range 0.2 ≤ hjnwindji ≤ 0.6 is
obtained for 3 ≤ N ≤ 10, corresponding to the approximate
power-law scaling (see the Supplemental Material [21])

hjnwindji ∝ N0.8: ð3Þ
Then we use the general prediction for the KZ mechanism
to relate the typical length ξ̂ ¼ L=N of a domain to the
quench time tevap (see e.g., Ref. [33])

ξ̂ ∝ tν=ð1þνzÞ
evap ; ð4Þ

where ν and z define the universality class of the transition:
ν is the correlation length critical exponent and z is the
dynamic critical exponent. Using z ¼ 2 and ν ¼ 1=2
relevant for a mean-field description of a 1D ring-shaped
system [33], we get

ξ̂ ¼ L
N

∝ t1=4evap: ð5Þ

Combining Eqs. (3) and (5), we predict with this simple
model

hjnwindji ∝ t−1=4×0.8evap ≈ t−0.2evap ; ð6Þ

which is in agreement with the experimental result
of α ¼ 0.19ð6Þ.
There are two main assumptions that could limit the

validity of this model. First, our system is not unidimen-
sional in terms of relevant single particle eigenstates.
However, we find for our parameters that ξ̂ is in the range
of 7–25 μm [34,35]; this is always larger than the width of
our annulus and justifies the use of a 1D model for
describing the phase coherence properties of the gas.
Second, this model does not take into account beyond
mean-field effects, related to either the finite size of the
system or the crossover between standard BEC and the
Berezinskii-Kosterlitz-Thouless mechanism. This could
change the value of the critical exponents and even lead
to deviations with respect to the power-law scaling of
Eq. (4) [36].

(a)

(d)(c)

(b)

FIG. 3 (color online). Study of the winding number. [(a) and
(b)] Histograms showing the statistical appearance of winding
number nwind for thold ¼ 0.5 s. (a) We show the result of 39
realizations for tevap ¼ 2 s. We get hnwindi ¼ 0.03ð8Þ. (b) We
show the result of 36 realizations for tevap ¼ 0.025 s. We get
hnwindi ¼ 0.19ð14Þ. (c) Mean absolute winding number hjnwindji
as a function of hold time (tevap ¼ 2 s). The data are fitted with an
exponential with a time constant of 7 s. (d) Mean absolute
winding number hjnwindji as a function of evaporation time
(thold ¼ 0.5 s) in log-log scale. The line is a power-law fit to the
data; hjnwindji ∝ t−αevap, which gives α ¼ 0.19ð6Þ. The uncertainty
on hnwindi and the bars on (c) and (d) represent the statistical error
determined with a bootstrapping approach described in the
Supplemental Material [21].
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We now discuss the possible extension of this work to a
more thorough test of the KZ mechanism. Power-law
scaling is challenging to test in our situation because of
the low value of the exponent (≈ 0.2) even if we span 2
orders of magnitude for tevap. The extreme values of this
range are experimentally limited. (i) The evaporation time
tevap should be chosen long enough so that at any given time
a local thermal equilibrium is achieved in the cloud (see the
Supplemental Material [21]). (ii) The largest evaporation
time is set by the cloud lifetime. These two limits cannot be
significantly modified, which fixes the relative range of
variation of the number of domains N. It could also be
interesting to study situations with absolute larger
N ¼ L=ξ̂. For a given density, the local equilibrium
requirement limits the lower value of ξ̂, and one can only
increase the length of the ring L. Within current exper-
imental techniques, it should be possible to load one order
of magnitude more atoms, leading for a given transverse
size to an increase of N by the same factor.
In the last part of this Letter, we show that one can extract

information from the interference patterns, which goes
beyond the determination of the topological number nwind.
In particular, the ripples of the fringes are related to the
phase distribution of the fluids in the central disk and the
ring, which is characterized by the one-body correlation
function g1. This function plays a specially important role
for low-dimensional systems, since it indicates how long-
range order is destroyed by thermal phonons. To give an
estimate of g1, we study the angular dependance of the
phase of the fringes ϕðθÞ as shown in Fig. 4(a). In particular
we consider the periodic function δϕðθÞ ¼ ϕðθÞ − nwindθ,
which describes the deviation of the reconstructed phase
from a perfect linear winding. We construct the angular
correlation function

gðexpÞ1 ðθÞ ¼ hei½δϕðθ0Þ−δϕðθ0þθÞ�iθ0; realizations; ð7Þ

where the average is taken over all images irrespective of
the value of nwind, and which is expected to be real in the
limit of a large number of realizations. A typical example
for Re½gðexpÞ1 � is given in Fig. 4(b), where the minimum for
θ ¼ π gives an indication of the phase coherence between
diametrically opposite points. This measured angular cor-
relation function gðexpÞ1 ðθÞ can be used to reconstruct the
first-order correlation function of the gas in the annulus (see
Supplemental Material [21]). This correlation function
could allow one to extract the evolution of the phonon
distribution during the thermalization of the fluid.
In summary, we have created supercurrents in annular

Bose gases by a temperature quench. The measured
distribution of direction and magnitude of these super-
currents are compatible with the KZ mechanism’s predic-
tions. This work could be extended to more refined tests of
the KZ mechanism by testing the power-law scaling with
the size of the annulus and correlating the number of

topological defects with the condensed fraction of the
system [33].
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