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It is shown that magnetically confined electron-positron plasmas can enjoy remarkable stability
properties. Many of the microinstabilities driving turbulence and transport in electron-ion plasmas
are absent if the density is so low that the Debye length is significantly larger than the gyroradius. In
some magnetic configurations, almost complete linear stability may be attainable in large parts of the
parameter space.
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Electron-positron plasmas are of great importance in
astrophysics and constitute the simplest kind of plasma
imaginable, the “hydrogen atom of plasma physics” so to
speak. Such an object has not yet been created on Earth, but
efforts are underway to do so by accumulating enough
positrons from a powerful source and injectng these into a
magnetic field, so that a stationary, quasineutral electron-
positron laboratory plasma is formed [1]. In such an
experiment, a number of important theoretical predictions
could be tested experimentally, such as the absence of
Faraday rotation, drift waves, and sound waves [2]. In the
present Letter, we point out that, in addition, such a plasma
could enjoy remarkable stability properties unlike those
of other laboratory plasmas. The common drift-wave and
electrostatic interchange instabilities driving turbulence and
spoiling confinement in tokamaks and other magnetic-
confinement fusion devices could largely be absent, in
particular, if the magnetic geometry is chosen judiciously.
Positrons can be produced in a number of ways, for

example by beta decay of Na-22 or by pair production from
MeV gamma rays created by nuclear capture of thermal
neutrons. These can then be moderated to sub-eV kinetic
energies (see, e.g., [3] or [4]); relatively intense cold
positron beams can be extracted [5], and the cold positrons
subsequently trapped [6]. In a first laboratory electron-
positron plasma, the aim is to produce a (positron ¼
electron) density in the range 1012 m−3 < n < 1013 m−3

and a temperature T between 1 and 10 eV. The Debye
length λD ¼ ðϵ0T=2ne2Þ1=2 is then a few mm and exceeds
the gyroradius by 2–3 orders of magnitude if the magnetic
field is about 1 T. The system qualifies as a plasma if its
macroscopic dimension L exceeds the Debye length by a
large factor. The gyroradius is thus very much smaller than
L, and any microinstabilities are expected to be well
described by conventional gyrokinetic theory. The collision
frequency νe is much larger than the inverse of the expected
confinement time, so the plasma will be in local thermo-
dynamic equilibrium, but at the same time νe is smaller than
the frequency of typical microinstabilities, so these can be
treated as being collisionless.

We use gyrokinetic theory to analyze the stability of such
an electron-positron plasma confined by a magnetic field
B ¼ ∇ψ ×∇α, where ψ denotes the magnetic flux inside a
surface of constant pressure and the coordinate α labels the
different field lines on such a magnetic surface. We thus
write the distribution function of the two species (a ¼ e and
p, respectively) as

fa ¼ fa0

�
1 −

eaϕ
Ta

�
þ ga;

where fa0ðψÞ is Maxwellian, ϕ denotes the perturbed
electrostatic potential, and ga satisfies the linear gyrokinetic
equation in the electrostatic approximation [7,8],

iv∥∇∥ga þ ðω − ωdaÞga ¼
eaϕ
Ta

J0

�
k⊥v⊥
Ωa

�
ðω − ωT�aÞfa0:

ð1Þ

Here, Ωa ¼ eaB=ma denotes the gyrofrequency, k⊥ ¼
kψ∇ψ þ kα∇α the perpendicular wave vector, ωT�a ¼
ω�a½1þ ηaðmav2=2T − 3=2Þ� with ηa ¼ d lnTa=d ln na
and ω�a ¼ ðTakα=eaÞd ln na=dψ the diamagnetic fre-
quency, and ωda ¼ k⊥ · vda the magnetic drift frequency.
Within factors of order unity (depending on the magnetic
geometry) these frequencies are of order ωd ∼ ω�∼
ðk⊥ρÞvT=L, where vT denotes the thermal speed and ρ
the gyroradius. The electrostatic potential, finally, is deter-
mined by Poisson’s law, which for a pure electron-positron
plasma becomes

ð1þ k2⊥λ2DÞϕ ¼ T
2ne

Z
ðgp − geÞJ0d3v: ð2Þ

The first notable prediction of these equations is obtained
by considering a straight magnetic field by taking ωda ¼ 0
and setting ∇∥ ¼ ik∥ in Eq. (1), giving

ga ¼
ω − ωT�a
ω − k∥v∥

eaJ0ϕ
T

fa0:
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When this solution is substituted into Eq. (2), the terms
involving ωT�a cancel and one merely finds a Landau-
damped sound wave. Thus, as is well known, there are no
drift waves in a pure electron-positron plasma. Perhaps
more surprisingly, there is no possibility of instability: what
in an electron-ion plasma are known as the slab branches
of the ion- and electron-temperature-gradient modes are
stable [9]. In other words, any instability must involve
magnetic curvature.
In order to analyze curvature-driven modes, we first take

the high-frequency limit, k∥vT ≪ ω, in Eq. (1). The
solution becomes

ga ¼
ω − ωT�a
ω − ωda

eaJ0ϕ
T

fa0;

and the dispersion relation from Eq. (2)

1 − I0ðbÞe−b þ k2⊥λ2D ¼ 1

n

Z
ωdðωd − ωT� Þ
ω2 − ω2

d

J20f0d
3v;

where b ¼ k2⊥T=mΩ2 and I0 denotes a modified Bessel
function. Here and henceforth, a subscript a ¼ p is under-
stood where appropriate. Because ωd and ω� are compa-
rable, the right-hand side of this equation is at most of
order unity, and any instability must therefore have a
perpendicular wavelength comparable to the Debye
length, k⊥λD ¼ Oð1Þ. Since this would contradict the
assumption k∥vT ≪ ω when ρ ≪ λD, we conclude that
no high-frequency modes are possible.
We are thus led to the opposite limit,ω ≪ k∥vT , in which

the solution of Eq. (1) instead becomes

ga ¼
ω − ωT�a
ω − ω̄da

eaϕ̄
T

fao;

where an overhead bar denotes an orbit average.
Substituting this solution into Poisson’s law (2) now gives
an integral equation for the mode structure,

ð1þ k2⊥λ2DÞϕ ¼ 1

n

Z
ϕ̄

�
1þ ω̄dðω̄d − ωT� Þ

ω2 − ω̄2
d

�
f0d3v; ð3Þ

which again implies k⊥λD ≲Oð1Þ. Whatever magnetic
geometry is used, we thus expect that instabilities with
k⊥ρ ¼ Oð1Þ do not exist. This is in stark contrast to
electron-ion plasmas, where such instabilities are dominant
and drive the observed turbulent transport.
Any remaining longer-wavelength-instabilities predicted

by the eigenvalue problem (3) would, however, cause
turbulence and transport, which could be similar to that
in conventional plasmas except that the wavelength is of
order λD instead of ρ. There is, however, an important
difference. Since ω ≪ k∥vT , the action integral for trapped
orbits,

J ¼
Z

mv∥dl;

is conserved. This integral is taken along the magnetic field
(the arc length is denoted by l) between points where v∥
vanishes, and is adiabatically invariant under slow pertur-
bations. The derivatives of J are related to the orbit-
averaged drift velocity [10,11],

vd ·∇ψ ¼ 1

eτb

∂J
∂α ;

vd ·∇α ¼ −
1

eτb

∂J
∂ψ ;

where

τb ¼
Z

dl
v∥

¼
Z

dl

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λB

p

denotes the bounce time in magnetic trapping wells
between two points of equal magnetic field strength and
λ ¼ v2⊥=ðv2BÞ. These wells are defined by the condition
λB < 1, and the integration along the field is carried out
between points where λB ¼ 1. A perfectly confining, so-
called omnigenous, magnetic field is one where the average
drift velocity has no component in the ψ direction [12].
Such magnetic configurations, where thus ∂J=∂α ¼ 0, are
sought in stellarator and magnetic-mirror research, and can
be found to a good approximation, but not exactly [13,14].
Already in 1968, Rosenbluth [15] suggested that mag-

netic configurations should be stable to low-frequency
interchange modes if J decreases away from the center
of the plasma. His argument for the stability in such so-
called maximum-J configurations was recently extended
and applied to stellarators [16,17]. In the present context, it
can be obtained by multiplying Eq. (3) by ϕ�=B and
integrating over velocity space and along the magnetic
field. This gives the quadratic form

Z
ð1þ k2⊥λ2DÞjϕj2

dl
B
−
1

2

Z X
j

jϕ̄jj2τbjvdλ

¼ 1

n

Z
∞

0

f02πv3dv
Z X

j

jϕ̄jj2τbj
ω̄dðω̄d − ωT� Þ
ω2 − ω̄2

d

dλ;

ð4Þ

where the sum over j is taken over all magnetic wells along
the field line, and τbj denotes the bounce time in the jth
well. The imaginary part of this equation implies that ω2 is
real, so that the eigenmodes are either purely oscillatory or
exponentially growing or damped. It thus follows from the
real part of Eq. (4) that, if an instability exists, then the
product ωT� ω̄d cannot be negative everywhere. However,
this product is equal to
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ωT� ω̄d ¼ −
k2αT
e2τbj

d ln n
dψ

�∂J
∂ψ −

kψ
kα

∂J
∂α

��
1þ η

�
mv2

2T
−
3

2

��
;

where in a well-optimized magnetic configuration ∂J=∂α is
small in comparison with ∂J=∂ψ . In an omnigenous
device, ∂J=∂α ¼ 0 and the product ωT� ω̄d is negative for
all orbits if the magnetic field satisfies the maximum-J
condition, 0 < η < 2=3, and the density peaks in the center
of the plasma. The right-hand side of Eq. (4) can then only
be positive if ω2 > 0, and we arrive at the remarkable
conclusion that there is no instability, regardless of how
large the density gradient is made (within the orderings
assumed). Thus, whereas in electron-ion plasmas the
maximum-J condition merely suppresses certain types of
instabilities (the low-frequency end of the spectrum), it
apparently leads to complete stability against electrostatic
modes in an electron-positron plasma with ρ ≪ λD and
0 < η < 2=3, if the magnetic field is perfectly omnigenous.
If it is only approximately so, the only instabilities
possible are those with very large radial mode numbers,
kψ∂J=∂α > kα∂J=∂ψ . At least according to quasilinear
theory, such instabilities should not lead to large transport.
The simplest electron-positron experiment to build

would not be a maximum-J configuration but something
less complicated. The very simplest alternative is perhaps a
magnetic dipole field, created either by a mechanically
suspended permanent magnet or by a levitated circular coil.
A plasma confined by a dipole field has the peculiar
property of being stable to low-frequency modes if the
equilibrium distribution function only depends on the
adiabatic invariants μ and J but not on the flux-surface
label ψ [18]. However, such a distribution function cannot
be Maxwellian and therefore does not apply to a plasma
where the collision frequency exceeds the inverse confine-
ment time. If f0 is Maxwellian, the threshold for insta-
bilities with ω ≪ k∥vT satisfies Eq. (4) with ω ¼ 0, and can
be obtained to a good approximation by taking ωd to be
independent of λ [19]. In this approximation, the eigen-
function ϕ becomes constant along the magnetic field and
the stability boundary for electrostatic modes becomes

d ln n
d lnU

¼ 1

3ðη − 1Þ ;

where UðψÞ ¼ V 0ðψÞ and VðψÞ denotes the volume
enclosed by the magnetic surface labelled by ψ. For a
dipole field, ψ is proportional to sin2θ=r in spherical
coordinates, so V 0ðψÞ ∝ ψ−4 and the stability criterion
can be written as

d lnðn=TÞ
d lnψ

<
4

3
: ð5Þ

The calculation leading to this result is similar to that in a
conventional ion-electron plasma considered in Ref. [19]

and is therefore not repeated here, but we note that the
result is much stronger in the present context. Because the
Debye length is much larger than the gyroradius, high-
frequency modes (ω of order k∥vT or larger) are guaranteed
to be stable and there is no need to make an explicit
assumption about low frequency. It is interesting to note
that the temperature gradient is stabilizing for these modes.
The achievable plasma pressure can also be limited

by electromagnetic instabilities, which should behave
very differently in the case of a maximum-J device and
a magnetic dipole. The former tend to have a magnetic
well [14] and are therefore stable against magnetohydro-
dynamic (MHD) modes up to a finite normalized pressure
β ¼ 2μ0p=B2, where p ¼ 2nT. Since β is exceedingly
small for the electron-positron plasma parameters men-
tioned above, unstable MHD interchanges or ballooning
modes are not expected. In a dipole, however, the magnetic
curvature is unfavorable, and such modes are unstable if

dðpU5=3Þ
d lnψ

> 0 ⇒
d lnðnTÞ
d lnψ

>
20

3
: ð6Þ

An arbitrarily small pressure gradient can thus be MHD
unstable if the pressure itself is small enough. On the other
hand, the marginally stable pressure profile is very steep, as
emphasized by Hasegawa-Chen-Mauel [18]. The stability
diagram corresponding to Eqs. (5) and (6) is shown
in Fig. 1.
In summary, it has been found that the electrostatic

instabilities causing turbulence and transport in magneti-
cally confined electron-ion plasmas are largely absent in
low-density electron-positron plasmas. Only low-frequency

4

A

B

C

D

4
3

20
3

d lnT
d ln

d lnn
d ln

20
3

FIG. 1. Stability diagram of an electron-positron plasma in a
dipole magnetic field. Regions A and B are stable to electrostatic
modes, while regions B andD are unstable to MHD interchanges.
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interchange modes can be unstable, and in some magnetic
configurations almost complete linear stability may be
attainable for a considerable range of plasma parameters.
It should be emphasized that two requirements are essential
for these conclusions: the absence of ions removes the
“slab” ion- and electron-temperature-gradient modes, and
the very low density expected in electron-positron plasmas
causes the Debye length to be large enough to stabilize
short-wavelength modes. Neither of these conditions is
satisfied in fusion experiments.
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