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A theory of the mode-coupling instability (MCI) in a fluid two-dimensional complex plasma is
developed. In analogy to the point-wake model of the wake-mediated interactions commonly used to
describe MCI in two-dimensional crystals, the layer-wake model is employed for fluids. It is demonstrated
that the wake-induced coupling of wave modes occurs in both crystalline and fluid complex plasmas, but
the confinement-density threshold, which determines the MCI onset in crystals, virtually disappears in
fluids. The theory shows excellent qualitative agreement with available experiments and provides certain
predictions to be verified.
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Two-dimensional (2D) complex plasmas serve as an
excellent natural model system for studies of generic
phenomena occurring in classical liquids and solids
[1–3], such as equilibrium and nonequilibrium melting
[4,5], diffusion [6,7], onset of plastic deformations [8],
dynamics of dislocations [9], etc. Two-dimensional com-
plex plasmas are usually obtained in radio-frequency (rf)
plasma discharge chambers [10–13]. The negatively
charged monodisperse microparticles levitate above a flat
horizontal rf electrode due to the balance between gravity
and the electrostatic force exerted by the inhomogeneous
vertical electric sheath field. The combination of the two
forces provides vertical confinement. The sheath field also
drives a strong vertical plasma flow, which in turn produces
a perturbed region downstream from each particle—the
so-called “plasma wake” [14–20]. The wakes exert
attractive forces on the neighboring particles and make
the pair interactions nonreciprocal, which has profound
consequences for the stability of these systems [21–25].
The stability of a 2D plasma crystal is determined by

three parameters: the areal density of particles; the strength
of the vertical confinement (which is effectively controlled
by the rf discharge power); and the frictional damping
rate (which is due to neutral gas collisions and, thus, is
proportional to the gas pressure). We have shown in
previous work [24–26] that a universal curve divides the
confinement-density plane into stable and unstable regions
(see, particularly, Fig. 7 and Eqs. (8) and (11) of Ref. [26]):
At high confinement strength and/or low density, the
collective behavior of the system is always stable and
can be described by an effective Hamiltonian. Crossing the
curve, which identifies the confinement-density threshold,
results in the onset of mode-coupling instability (MCI)
[24–26]. The MCI is triggered by resonant coupling of
the horizontal (longitudinal acoustic) and vertical (trans-
verse optical) phonon modes of the crystal, due to the
nonreciprocal particle-wake interactions [24]. The mode

coupling sets in only if the dispersion relations of the two
modes intersect, which, in turn, occurs only if the confine-
ment-density threshold is crossed. The instability can be
suppressed by increasing the damping rate; thus, there is
also a damping threshold for any given value of the
confinement strength and density. The instability converts
the free energy of the flowing plasma into particle thermal
energy, resulting in melting of the crystal. All of these
phenomena are now well understood and presented quan-
titatively in numerous theoretical [24–29] and experimental
[26,30–35] papers.
However, the remarkable continuing evolution of the

system after melting has never been understood. Both
experiment and simulation show that the particle temper-
ature keeps increasing exponentially after melting [33,34],
eventually saturating at an extremely high (∼keV) level.
This suggests that an MCI-like instability continues to
operate after the crystal has melted. This Letter presents the
first theoretical treatment of just such an instability in the
fluid state (all previous work on the MCI has been for 2D
crystals). The theory is based on a layer-wake model, which
is an adaptation to the continuum fluid of the point-wake
model [25,26,36] commonly employed to describe the
wake-mediated interactions in 2D plasma crystals. We
demonstrate that a wake-induced mode coupling instability
does persist in a 2D fluid layer. Moreover, the instability is
stronger in the fluid state: the growth rate is larger, and the
confinement-density threshold virtually disappears. The
theory shows excellent qualitative agreement with the avail-
able experimental data, and makes definite predictions to be
tested in future experiments.
Waves in a fluid layer.—Let us consider a system of

particles of charge Qð< 0Þ introduced in a plasma. The
electrons and ions are assumed to provide screening which
is characterized by some effective screening length λ. The
electrostatic potential φ of such a system is described by the
Poisson equation
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∇2φ − λ−2φ ¼ −4πQn; ð1Þ

where nðr; tÞ is the particle number density which can vary
both in space and time. We assume that, in equilibrium,
particles form a horizontal layer, uniform and of infinite
extent in the xy plane, with vertical density profile
n0ðzÞ. With a linear perturbation n1ðr; tÞ also present,
the complete density is nðr; tÞ ¼ n0ðzÞ þ n1ðr; tÞ.
Equilibrium 2D plasma crystals observed in experiments

are usually monolayers. Typical vertical displacements due
to thermal particle motion are ∼10 μm (i.e., comparable to
the grain size and, therefore, hardly detectable [31]), so
n0ðzÞ can be well approximated by the delta function. But
when the crystal undergoes nonequilibrium melting, by
external forcing [5] or due to MCI [26], and the kinetic
temperature T reaches dozens of eV, the vertical spreading
of the layer becomes quite noticeable. The average density
profile in this case is described by the Boltzmann distri-
bution in the parabolic potential well 1

2
mΩvz2, where m is

the particle mass and Ωv is the eigenfrequency of the
vertical confinement. This yields

n0ðzÞ ¼
ρ0ffiffiffi
π

p
L
exp

�
−
z2

L2

�
; ð2Þ

where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=mΩ2

v

p
is the thickness of the layer and ρ0

is the areal density. Assuming that the horizontal size of the
layer does not change with temperature, we obtain ρ0 equal
to the inverse of the area of the primitive lattice cell; for a
triangular lattice with the nearest-neighbor distance Δ, we
get ρ0 ¼ ð2= ffiffiffi

3
p ÞΔ−2. Obviously, for small temperatures

(or strong confinements) n0ðzÞ → ρ0δðzÞ.
For the sake of clarity, we shall first assume that the layer

thickness L is much smaller than any relevant spatial scale
of the problem, so that the vertical density profile of the
layer can be represented by the delta function. Deviation
from equilibrium is then characterized by small perturba-
tions of the areal density and the levitation height. Since the
fluid layer in equilibrium is uniform and isotropic in the xy
plane, one can specify that the perturbations with frequency
ω and wave number k propagate in the x direction, so that
the areal density is of the form ρðx; tÞ ¼ ρ0 þ ρ1ðx; tÞ,
where ρ1ðx; tÞ ¼ ρaeikx−iωt þ c:c: and ρa ≪ ρ0. Similarly,
the height perturbation (with respect to z ¼ 0) is ξðx; tÞ ¼
ξaeikx−iωt þ c:c: and ξa ∼ ρa.
The electrostatic potential is a superposition of equilib-

rium and varying components, φðr; tÞ ¼ φ0ðzÞþ
φ1ðx; z; tÞ. The equilibrium potential of the layer is the
solution of the one-dimensional Poisson equation (prime
denotes the z derivative)

φ00
0 − λ−2φ0 ¼ −4πQρ0δðzÞ; ð3Þ

which yields φ0ðzÞ ¼ 2πQρ0λe−jzj=λ. For the varying
component, we suppose that φ1 ∝ ξ, so that

∂2φ1=∂x2 ¼ −k2φ1 þOðξ2Þ. Then, from Eq. (1), we
obtain (to the same accuracy) the equation for φ1,

φ00
1 − ðλ−2 þ k2Þφ1

¼ −4πQρ0½δðz − ξÞ − δðzÞ� − 4πQρ1δðz − ξÞ; ð4Þ

where Eq. (3) was utilized. Let us introduce the following
normalization:

φ

2πQρ0λ
→ φ; r=λ → r; kλ → k;

so that the equilibrium component of the potential is

φ0ðzÞ ¼ e−jzj: ð5Þ

We write the formal solution of Eq. (4) as φ1 ¼
Ae−Kjz−ξj þ Be−Kjzj, where K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
. The factors A

and B are determined by the discontinuity of the first
derivative at z ¼ 0 and z ¼ ξ, due to the delta functions on
the rhs of Eq. (4): φ0

1j0þ − φ0
1j0− ¼ −2 and φ0

1jξþ − φ0
1jξ− ¼

−2ð1þ ρ1=ρ0Þ. This gives the solution

φ1ðx; z; tÞ ¼ K−1
�
e−Kjz−ξj − e−Kjzj þ ρ1

ρ0
e−Kjz−ξj

�
; ð6Þ

which satisfies the assumption φ1 ∝ ξ in the entire xz plane
except for the segments minf0; ξg < z < maxf0; ξg. For
the purposes of our problem, we only need the solution
outside of the segments [37].
Now we can calculate the total potential Φ ¼ φg þ φw

produced by the layer of particles (grains, “g”) and by the
wakes (“w”). For the particles, we have φgðx; z; tÞ ¼
φ0ðzÞ þ φ1ðx; z; tÞ. In the framework of the simplest
point-wake model [25,26,36], each individual wake has
the charge qð> 0Þ located below the respective particle
at the distance δ. Therefore, by shifting a replica
of the particle layer downwards by the distance δ and
replacing Q with q, we obtain a continuous representation
of wakes—the layer-wake model. The resulting potential is
φwðx; z; tÞ ¼ − ~qφgðx; zþ δ; tÞ, where ~q ¼ jq=Qj; in the
explicit form, from Eqs. (5) and (6), we derive the
following expression accurate to OðξÞ:

φwðx; z; tÞ ¼ − ~qe−ðδþzÞ − ~qe−KðδþzÞK−1
�
Kξþ ρ1

ρ0

�
: ð7Þ

For the layer of particles, we expand Eqs. (5) and (6) up to
the terms providing linear (∝ ξ) contributions to the electric
field at z ¼ ξ, which gives
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φgðx; z; tÞ ¼ 1þ 1

2
z2 − Kξzþ K−1 ρ1

ρ0

−
�
1þ ρ1

ρ0

�
jz − ξj þOðz3; z2ξÞ: ð8Þ

The dynamics of perturbations is governed by the
equations of horizontal and vertical motion. For simplicity,
we omit the damping term due to neutral gas friction, which
is characterized by the damping rate ν (the friction can be
taken into account by simply replacing ω with ωþ 1

2
iν in

the resulting dispersion relations). The equations for the
horizontal and vertical perturbations read

∂vx
∂t ¼ −

Q
m
∂Φ
∂x

����
z¼ξ

; ð9Þ

∂2ξ

∂t2 ¼ −Ω2
vξ −

Q
m

�∂Φ
∂z

����
z¼ξ

−
∂φw

∂z
����
z¼0

�
; ð10Þ

where the horizontal velocity vx is related to the density
perturbation via the continuity equation

vx ¼
ω

k
ρ1
ρ0

:

The last term in Eq. (10) is the constant “self-action” field
produced by wakes, ∂φw=∂zjz¼0 ¼ ~qe−δ. This term only
affects the equilibrium levitation height and, hence, should
be subtracted from the perturbed equations. We keep in
mind that the absolute value jz − ξj appears in Eq. (8) as the
result of integration across the layer, with the density
profile [Eq. (2)] in the limiting form of the delta function.
Therefore, the derivatives of jz − ξj with respect to z or x,
taken at z ¼ ξ, represent the self-action of an infinitely thin
layer and should be set equal to zero. Thus, by calculating
components of the electric field from Eqs. (8) and (7) and
substituting the results in Eqs. (9) and (10), we finally
derive the dispersion relations for the longitudinal (hori-
zontal, “h”) and transverse (vertical, “v”) wave modes

½ω2 − ω2
hðkÞ�½ω2 − ω2

vðkÞ� þ σ2ðkÞ ¼ 0: ð11Þ

We normalize all frequencies by

ωp2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πQ2ρ0
mλ

r
; ð12Þ

which is the effective plasma frequency in the (2D) layer, so
the modes are

ω2
hðkÞ ¼ ð1 − εe−ðK−1ÞδÞ k

2

K
; ð13Þ

ω2
vðkÞ ¼ Ω2

v þ 1 − K þ εðKe−ðK−1Þδ − 1Þ; ð14Þ

and the coupling term is

σðkÞ ¼ εke−ðK−1Þδ:

The remarkable conclusion from Eqs. (11)–(14) is that
the behavior of the longitudinal and transverse waves in a
fluid layer is similar to the familiar behavior in a crystal
[25,26,29]—the modes are modified, coupled, and desta-
bilized by the wake-mediated interactions. The magnitude
of the effect is characterized by the parameter ε ¼ ~qe−δ.
Normally, this parameter is substantially smaller than unity
[26], so the modes themselves are only weakly affected by
additional terms ∼ε. (Note that the longitudinal mode
is sustained for ε < 1.) There is, however, one striking
difference from the mode coupling in crystals: From
Eqs. (13) and (14) it is evident that ωhðkÞ monotonically
increases with k, while ωvðkÞmonotonically decreases; i.e.,
the modes always cross [38]. Therefore, in contrast to
crystals, the unstable hybrid mode (formed in the vicinity of
the crossing) is always present in a fluid layer. The crossing
(cr) occurs at the wave number kcr, which is determined
from the condition ωhðkcrÞ ¼ ωhðkcrÞ≡ ωcr yielding [39]

kcr ≃ 1

2
ð1þΩ2

vÞ þOðεÞ: ð15Þ

The k width of the hybrid mode and the maximum growth
rate of MCI, γ, are given by jωhðkÞ − ωvðkÞj ≤ γ ¼
σðkcrÞ=ωcr þOðε2Þ.
Properties of MCI in a fluid layer.—In order to compare

the fluid and crystalline regimes, it is convenient to relate
the respective frequency scales—the effective plasma
frequency ωp2D and the dust-lattice (DL) frequency

ΩDL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=mλ3

p
. By expressing ρ0 via the lattice con-

stant Δ of a crystalline monolayer, we readily obtain

ωp2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=

ffiffiffi
3

pq
ΩDL=κ ≃ 2.7ΩDL=κ, where κ ¼ Δ=λ is

the screening parameter. In particular, this relation allows
us to easily recalculate the value of Ωv (in units of ωp2D)
corresponding to the MCI threshold in a crystal [26]: e.g.,
for a lattice with κ ¼ 1 the threshold value is Ωv ≃ 1.5 (the
mode crossing in this case occurs at kcr ≃ 1.6). Note that
σðkÞ attains a maximum at k≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δ−2
p

(≃δ−1 for typical
experiments); for conditions near the threshold, this k is
usually close to kcr, i.e., ð1þ Ω2

vÞδ ∼ 1. Therefore, when
Ωv is increased above the threshold, the instability growth
rate γ ∝ expð− 1

2
Ω2

vδÞ starts rapidly decreasing, and when it
becomes equal to 1

2
ν, the instability disappears.

Up to this point, we have assumed that the layer
thickness L in Eq. (2) is negligibly small compared to
the wavelength, i.e., that the temperature is sufficiently
small. But if T increases to the point where kL≳ 1, the
longitudinal dispersion relation should change to the
dispersion relation for acoustic waves in a three-dimensional
plasma [40]; i.e.,ωhðkÞ should tend to a constant value equal
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to the plasma frequency ωp (calculated for the volume
density n0 ≃ ρ0=L); indeed, from Eq. (13), we obtain
ωhðkÞ≃ ωp for k≃ L−1. On the other hand, the shear
mode cannot be sustained in a three-dimensional gas, so the
dispersion of the transverse mode disappears at kL≳ 1.
Thus, thermal spreading of the fluid layer can inhibit mode
coupling and, thereby, set a maximum for the temperature
that can be reached in the fluid state via the MCI: The mode
crossing and, hence, the hybrid mode are expected to
disappear gradually when L becomes as large as ∼k−1cr .
By substituting kcr from Eq. (15) and using the expression
for L, we estimate the maximum temperature (measured in
units of mω2

p2Dλ
2) that can be reached when damping is

negligible (ν ≪ γ)

Tmax ∼
Ω2

v

ð1þΩ2
vÞ2

:

For typical conditions of the MCI onset in a crys-
tal, Tmax ∼ 1–3 keV.
When the particle temperature T is sufficiently large, the

acoustic longitudinal mode becomes an ordinary (gas-
dynamic) sound wave, with the pressure provided by the
thermal motion of particles. To account for this effect, we
simply need to add a term k2v2T to the rhs of Eq. (13) [41]
(where the thermal velocity vT ¼ ffiffiffiffiffiffiffiffiffiffi

T=m
p

should be nor-
malized by ωp2Dλ). The longitudinal mode then becomes
essentially nondispersive at larger k, with ωhðkÞ≃ kvT . On
the one hand, this effect could restore the hybrid mode at
kL≳ 1 and cause the temperature to grow above Tmax. On
the other hand, dissipation of regular sound due to viscosity
and thermal conductivity [42] rapidly increases with
temperature (since the mean free path for interparticle
Coulomb collisions scales as ∝ T2), so the effect might be
suppressed by the resulting damping. It should also be
noted that the ordinary (nonresonant) two-stream instability
between flowing ions and stationary particles occurs in a
thick uniform layer, and is known to heat the particles in
that regime [43]. Thus, the situation regarding instabilities
driven by ion streaming through a layer of a finite thickness
is complex, and yet to be fully explored.
Our discussion has been based on a simple layer-wake

model, which is the extension (to a continuum fluid) of the
point-wake model that has previously been used success-
fully to treat MCI in 2D crystals. Models of this type
provide a qualitatively reasonable “far-field” representation
of the wake potential, but may not be adequate in situations
where moving particles approach the wake “focus” of their
neighbors. If the layer thickness L is comparable to or
larger than the wake length δ, the mode coupling may show
substantial dependence on details of the wake-field struc-
ture. It is also possible that kinetic effects which are not
included in our fluid model, such as particle discreteness
and Landau damping, could play a significant role in this
regime.

To illustrate the range of temperatures where the layer
model is valid, let us take Tmax as a convenient point at
which the layer thickness is L ∼ k−1cr . Then, for T ≲ Tmax
the sufficient condition of applicability can be written as
kcrδ ≫ 1, and, by virtue of Eq. (15), we conclude that the
product ð1þ Ω2

vÞδ must be substantially larger than unity.
As we already pointed out, its value is usually about unity
near the MCI threshold in a crystal. Hence, the model is
expected to be valid up to T ∼ Tmax when Ωv is somewhat
increased above the threshold. Moreover, the theory is
always applicable if damping causes the temperature to
saturate at T ≪ Tmax.
Conclusions.—We have shown that wake-induced mode

coupling operates in a similar way in both crystalline and
fluid 2D complex plasmas. However, the MCI threshold
virtually disappears in the fluid regime, and the instability
growth rate can be even larger in the fluid than in the crystal
for, otherwise, the same conditions. This would appear to
explain the experiment reported in Fig. 3(a) of Ref. [34],
where a period of exponential growth in the kinetic
temperature coincided with melting of the crystal, and
then a second period of exponential growth, at a larger
growth rate, occurred after melting. Furthermore, the theory
presented here explains the propagation of melting fronts
commonly observed in experiments with crystalline mono-
layers (see, e.g., Ref. [33], Figs. 3 and 4): MCI is triggered
in a crystal when the density threshold is reached, so the
melting usually starts in the center of a monolayer, where
the density is the highest. Once “ignited,” the melting front
propagates outwards, where the density is normally well
below the (crystalline) MCI threshold [44]. In this way,
MCI melting is analogous to exothermic reactions, e.g.,
combustion [42,45,46].
Another remarkable prediction of the theory is that there

are conditions for which the fluid state is viable (because
MCI keeps the fluid hot), but the crystalline state is also
viable (because the value of the confinement frequency is
above the MCI threshold in a crystal). In experiments, the
confinement strength is a monotonically increasing func-
tion of the rf discharge power P [47]. Therefore, hysteresis
is to be expected when melting is controlled by varying the
power: The value of P at which the crystal melts must be
systematically smaller than P at which the system recrys-
tallizes. Moreover, a slightly “undercritical” crystal (i.e., a
stable crystal near the MCI threshold) could undergo
sporadic melting due to a sufficiently strong mechanical
perturbation, e.g., by a laser beam. All these predictions
suggest a series of new experiments that will be of general
interest.
It should also be noted that the theory presented in this

paper is based on a simple model for the wakes. Further
investigation will be required to determine if significant
effects result from more accurate representation of the wake
structure, or from kinetic effects omitted from the present
fluid model. It is expected that this work will stimulate
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theoretical and simulation activity to put this on a firmer
and more quantitative basis.
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