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To extract from an image of a single nanoscale object maximum physical information about its position,
we propose and demonstrate a framework for pupil-plane modulation for 3D imaging applications
requiring precise localization, including single-particle tracking and superresolution microscopy. The
method is based on maximizing the information content of the system, by formulating and solving the
appropriate optimization problem—finding the pupil-plane phase pattern that would yield a point spread
function (PSF) with optimal Fisher information properties. We use our method to generate and
experimentally demonstrate two example PSFs: one optimized for 3D localization precision over a
3 μm depth of field, and another with an unprecedented 5 μm depth of field, both designed to perform
under physically common conditions of high background signals.
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Optical imaging of single nanoscale objects such as a
quantum dot, metallic nanoparticle, or a single molecule
provides a powerful window into a variety of biological or
material systems, and the physical problem of extracting
maximum information from single emitters is an important
goal. One application is single-particle tracking (SPT [1]),
which relies upon extracting the spatial trajectory of a
single moving molecular label, quantum dot, or metallic
nanoparticle from a series of images. For example, a single
mRNA particle can be localized and followed in a living
cell in real-time [2]. Another application of single-molecule
localization is “superresolution” (SR) microscopy [3–5],
which works by ensuring that only a sparse subset of labels
on an extended object (e.g., a cellular structure) are
emitting in each imaging frame. One localizes the single
emitters just as in SPT; the multitude of localizations are
then reconstructed into a single, high-resolution image.
This enables the spatial resolving power of current SR
microscopy to surpass the classical diffraction resolution
limit by five- to tenfold.
Historically, single-particle localization was used for 2D

imaging, namely, inferring the x, y coordinates of each
emitter, e.g., by centroid-fitting or by fitting to a 2D
Gaussian [6]. However, the third spatial dimension z, or
the depth of an emitter, can also be inferred from its
measured 2D image. This can be done by considering how
the shape of the microscope’s point spread function (PSF)
varies with emitter position. The PSF of a microscope is the
image that is detected when observing a point source. For a
standard microscope, to a good approximation, the PSF in
focus (i.e., z ¼ 0) resembles a circular Airy pattern, and its
shape is invariant to lateral shifts (x, y) of the emitter—
however, it will change upon defocus (z). Unfortunately,
the standard PSF spreads out (defocuses) quickly with z,
which limits the range over which z can be determined.

Importantly, to obtain much more useful 3D position
information, the PSF of the microscope can be altered—for
example, by pupil (Fourier) plane processing [7,8]. Phase
modulating the electromagnetic field in the Fourier plane is
a low-loss method to encode z information in the shape of
the image on the camera. Examples of this include
astigmatic PSFs [9,10], double-helix (DH-PSF) micros-
copy [11–13], or segmented phase ramps [14].
The precision to which a single emitter can be localized

depends on several factors. These include the emitter’s
brightness (detected photon flux), background fluores-
cence, detector pixel size, and detection noise [15,16].
Another key factor is the shape of the PSF itself. For
example, in astigmatism-based 3D imaging, the PSF is
altered to have an elliptical shape, and the z position of the
emitter can be determined by the relative widths of the PSF
along the two principal axes [9,10]. The double-helix PSF
[12,13] is composed of two spots, with the angle between a
line connecting them and the camera axis encoding the z
position of the emitter. Among existing PSFs for 3D
imaging, the double-helix PSF has been shown to allow
a larger depth of field than astigmatism (∼2–3 μm vs
∼0.5–0.7 μm) [17], and a recently suggested PSF based on
accelerating beams [18] demonstrates high, uniform pre-
cision over a 3 μm range. The purpose of this Letter is to
fundamentally improve upon these previous schemes.
Here, we address the problem of finding a feasible and

optimally informative PSF. Namely, we ask the question—
given an imaging scenario with certain characteristics (e.g.,
magnification, noise level, pixel size, emitter signal)—what
is the pupil plane pattern that would yield maximal physical
information about the 3D position of an emitter, and what is
the resulting optimal PSF? In otherwords—since localization
precision depends on the PSF of the system—can we design
the system to have a PSF that would yield the best possible
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precision in determining x, y, and z, compared to any other
PSF? We regard such a PSF as optimally informative.
A powerful measure of the effectiveness of a PSF for

encoding an emitter’s position is based on Fisher information
[17,19,20], a concept from statistical information theory.
Fisher information is a mathematical measure of the sensi-
tivity of an observable quantity (the PSF) to changes in its
underlying parameters (emitter position). Using the Fisher
information function, one may compute the Cramér-Rao
lower bound (CRLB), which is the theoretical best-case x, y,
z precision that can be attained (with any unbiased estimator)
given a PSF and a noise model. With the right estimator, the
best-case localization precision represented by the CRLB
can be approached in practice [21–23]. Traditionally, the
CRLB has been used as an analysis tool, i.e., to evaluate the
performance of an existing PSF design, which is often
conceived using physical intuition and reasonable require-
ments (e.g., a significant change of the PSF over the z range
of interest, and concentration of emitted light into small
spots). The CRLB has also been used to fine-tune an existing
PSF [24], and other metrics have been suggested for
optimizing rotating PSFs [25].
To find the optimal pupil plane pattern, and thereby the

optimal PSF, we propose a new approach to PSF design—
we treat the PSF as a free design parameter of the imaging
system, and generate PSFs with optimal photon-efficient 3D
position encoding, with no prior constraints on the shape of
the PSF. This is achieved by CRLB optimization—that is,
we directly solve the mathematical optimization problem of
minimizing the CRLB (and hence improving the precision
bound) of the system, and use the resulting PSF. Such a PSF
will provide optimal precision by definition. Physically
reasonable requirements are accounted for by using realistic
imaging and noise models, including pixelation, photon
shot-noise Poisson statistics, and background fluorescence.
This enables us to demonstrate, for typical experimental
conditions and without scanning, the highest theoretical
precision to date over a 3 μm axial range, as well as<50 nm
experimental precision for an unprecedented ∼5 μm range.
Fisher information and CRLB.—Single-emitter locali-

zation is in essence an estimation problem: Given a noisy
and pixelated measurement of a PSF, the goal is to estimate
the 3D position of the emitter. The Fisher information
matrix [17,20] describes the sensitivity of a measurement
(in our case, the PSF) to the parameters being estimated
(emitter position). It is defined as

IijðθÞ ¼ −E
�∂2 ln (fðs; θÞ)

∂θi∂θj
�

ð1Þ

where θ represents the vector of parameters being esti-
mated, fðs; θÞ is the probability density, i.e., the probability
of measuring a signal s given the underlying parameter
vector θ, and E stands for the expected value.
In our case, the signal s corresponds to the measured PSF.

This measurement is assumed to be corrupted by noise, and

further pixelated by the integration of intensity over the finite
size of each detector pixel. The vector of underlying
parameters in our case is given by θ ¼ ðx; y; z; Nph; βÞ,
corresponding to the 3D position of the emitter, the total
signal photons, and the mean background level per pixel,
respectively. The probability density fðs; θÞ is derived from
the imaging and noise model, as follows: Each pixel in the
measured image represents detected photons; theoretically
this is modeled by a Poisson distributed variable, with its
expected value equal to the model PSF in that pixel, as well
as additive Poisson noise with a mean of β photons per pixel,
due to background fluorescence. In this case, the Fisher
information is a 5 × 5 matrix, given explicitly by [26]

IijðθÞ ¼
XNp

k¼1

1

μθðkÞ þ β

�∂μθðkÞ
∂θi

��∂μθðkÞ
∂θj

�
; ð2Þ

where μθðkÞ is the value of the model PSF in pixel k, and Np
is the number of pixels in the measurement. The diagonal of
the inverse of the Fisher information matrix yields the CRLB
vector, which bounds the variance of any unbiased estimator
θ̂ [20] by

σ2i ¼ Eðθ̂i − θiÞ2 ≥ ½(IðθÞ)−1�ii ≡ CRLBi: ð3Þ
The calculated CRLB can be compared to simulated or

experimentally measured quantities as follows. For exam-
ple, one can simulate or measure many images of a small
static emitter, estimate its position (x=y=z) from each
image, and calculate the variance of the estimations.
This variance is theoretically bounded from below
by (CRLB1=CRLB2=CRLB3).
The imaging model.—The 3D shape of a system’s PSF is

defined by pupil-plane alteration of the optical electromag-
netic field [8,12,13,27]. Concretely, a regular microscope is
augmented by a 4f system [7], with a phase mask placed in
the Fourier plane (Fig. 1). In the electromagnetic scalar
approximation, the resulting PSF in the detector plane
Iðu; vÞ satisfies [7]

Iðu; v; x; y; zÞ ∝ jFfEðx0; y0; x; y; zÞPðx0; y0Þgj2; ð4Þ

where Eðx0; y0Þ is the electric field in the pupil plane, caused
by a point source at x, y, z, which is the 3D position relative
to the focal plane and the optical axis. The complex function
Pðx0; y0Þ is the modulation function, or pattern, imposed in
the pupil plane, by a specifically designed transmissive mask
or a controllable spatial light modulator (SLM). We denote
by F the 2D spatial Fourier transform. The coordinate
scaling is such that camera coordinates (u, v) correspond to
Fourier plane frequencies (u=λf, v=λf), where λ is the
wavelength, and f is the focal distance of the 4f lens. For
details see the Supplemental Material [28].
The optimization problem.—The optimization problem

at hand is finding a pupil plane function Pðx0; y0Þ that yields
a PSF with optimal CRLB characteristics. Because the
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square root of the CRLB of a PSF corresponds to the limit
of attainable precision [Eq. (3)], we require that the
optimization produces minimal mean

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLB

p
(over x,

y, and z) over a z range of 3 μm; this defines our objective
or cost function. We use realistic parameters for noisy
biological cellular imaging data as encountered in SPT or
SR imaging (2000 detected signal photons per molecule per
frame, mean of β ¼ 28 background photons per pixel).
Mathematically, the optimization problem is formulated as

min
Pðx0;y0Þ

X
i¼x̂;ŷ;ẑ

X
z∈Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLBiðzÞ

p
; ð5Þ

with the range Z≡ ½−1.5 μm; 1.5 μm�. Practically, we
optimize over a discrete set of z positions, consisting of
250 nm increments within the range Z (a finer sampling grid
did not change the results significantly). We further consider
the practical constraint that Pðx0; y0Þ is obtained using a
phase-only SLM, imposing the constraint jPðx0; y0Þj ¼
1∀x0; y0. This is necessary to conserve photons—a single-
molecule emitter, for example, generates a finite number of
photons before irreversible photobleaching.
Although it is possible in principle to optimize the phase

at each one of the SLM’s 512 × 512 pixels separately, for
practical reasons we optimize over a much more compact
set of design parameters, consisting of the first 55 Zernike
modes [32]. The optimization problem in Eq. (5) is non-
convex, and a global minimum is not guaranteed to be
found. We therefore initiate the optimization routine several
times, starting from random initial values, and pick the final
outcome with the minimal objective value. The optimiza-
tion problem is solved using the interior-point method of
Matlab’s fmincon function.
Results.—The optimal solution, generated automatically

by our optimization routine and shown in Fig. 2(a), is the
resulting pupil plane phase pattern, termed the saddle-point
(SP) mask due to its Fourier-plane shape. Figure 2(b) shows
the numerically calculated SP-PSF corresponding to the
saddle-point mask in the simulated imaging system. The
dominant features of the SP-PSF are two strong lobes with
varying distance and angle as a function of emitter depth
(z). Figure 2(c) shows calculated x, y, and z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CRLB

p
for

the SP mask, compared to two commonly used PSFs—the
double-helix PSF [12,13,33] and astigmatism [9,10]. The
calculation is based on the Poisson-noise corrupted model
with constant background (see the Supplemental Material
[28]), with 3500 signal photons, and β ¼ 50. In order to
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account for excess electron-multiplying CCD (EMCCD)
noise, the quantum efficiency is adjusted as in [34] to 0.55,
to match our setup’s measured noise characteristics. This
would be equivalent to ∼2000 detected signal photons and
∼28 background photons per pixel. The SP mask, designed
exactly for the purpose of having minimal mean CRLB,
outperforms the existing masks in this parameter.
To experimentally demonstrate localization performance

for subwavelength-sized emitters under typical biological
fluorescence imaging conditions, we imaged 100 nm
diameter fluorescent nanospheres on a standard microscope
cover glass, using an inverted NA 1.4 oil immersion
microscope system with custom widefield laser excitation
and equipped with an EMCCD image sensor. Phase masks
were loaded onto an SLM placed in the Fourier plane as
described in [13] and schematically shown in Fig. 1.
Fluorescence was excited using a 514-nm argon ion laser
filtered by a dichroic and band pass filter (578=105). A
controllable background level β at the sample was produced
by the microscope stand’s white light illuminator (see the
Supplemental Material [28]).
The localization procedure consists of the following

steps: First, a set of calibration measurements is taken. A
nanosphere is scanned at defined z positions by stepping
with an axial objective positioner (Δz ¼ 50 nm), and a
calibration dictionary of the PSF at these increments is thus
experimentally created. Then, given a measured image of
an emitter, localization is performed using a maximum-
likelihood estimator (MLE) [26]. The MLE approach is
increasingly used in superresolution single-molecule
imaging to estimate an emitter’s position (x, y, z) as well
as possibly the number of signal and background photons
(a total of 5 parameters), given a measured noisy image
frame and an imaging model. MLE finds the set of

parameters that yield the best (most likely) correspondence
of the experimental image and model given the measured
data, along with image formation and noise models. We
create a continuous image formation model, necessary for
the MLE, by using locally phase-retrieved masks calculated
from the measured dictionary [35]. See the Supplemental
Material [28] for the detailed estimation method.
Figure 3 shows experimental localization results. After

creating a measured dictionary [examples at different z
positions in Fig. 3(a)], a nanosphere was placed in various z
positions, and imaged for 500 frames under typical super-
resolution conditions (mean detected signal photons per
frame was ∼3470, and mean background photons per pixel
β ≈ 43). Each frame was then localized with MLE, using
the locally-phase-retrieved masks, calculated from the
dictionary measurements in the 300 nm range surrounding
the initial estimate of the emitter position. The standard
deviation of the 500 measurements at each z position
defines the localization precision.
The localization process was repeated using the double-

helix mask as well, and the entire measurement procedure
was performed on four different nanospheres. The preci-
sion results are shown in Fig. 3(b). The saddle-point mask
exhibits superior performance to the DH-PSF in all three
dimensions throughout almost the entire tested 3 μm depth
range. Figure 3(c) shows example precision histograms of
all 2000 detected positions for both PSFs, at z ¼ −1 μm.
To further demonstrate the generality and one of the new

possibilities opened by our method, we use it to optimize a
PSF for a challenging very large imaging depth for a single
PSF of 6 μm. This is done by minimizing the 3D CRLB
with the same parameters as before, but this time over a
6 μm z range. The resulting mask and its experimental
validation are described in the Supplemental Material [28].
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Discussion.—While the behavior of the experimentally
tested phase masks is qualitatively similar to the theoretical
CRLB calculations, there are apparent discrepancies
between theory and experiment [comparing Fig. 2(c) with
3(b)]. This stems from several possibilities, such as noise
model mismatch, nonconstant background, and variations
in actual photon number. However, the most crucial
contribution to this discrepancy is imaging model mis-
match: The experimentally produced PSF is somewhat
different from the computed one [compare Fig. 2(b) to
3(a)]. This is due to polarization effects, broadband
fluorescence detection, and additional aberrations that
are unaccounted for in our imaging model. However, the
experimental precision matches the CRLB calculated from
the experimentally measured dictionary very well (see the
Supplemental Material [28] for this result). This means that
the CRLB is not only a mathematical limit, but indeed an
experimentally valid criterion for optimization, which
yields a measurable performance benefit.
In this work we have demonstrated a new, general

method for PSF design that produces information-optimal
PSFs subject to system conditions. The optimal PSFs have
no prior constraints on their shape. We have applied our
method to produce optimal PSFs for 3D high-precision
spatial localization over large z ranges. These PSFs can
immediately be used for SPT and SR microscopy; see [28]
for an experimental tracking demonstration using our PSF
with a 6 μm range. The PSFs can be also used for other
applications such as bead location monitoring in magnetic
tweezer experiments. The optimization design routine may
draw on other sets of basis functions for propagating
electromagnetic fields than were used in this first illus-
tration, and may even include aspects of anisotropic dipolar
emission [8,27]. In addition to future technical improve-
ments (e.g., brighter emitters, better detectors, etc.), treating
the PSF as a free design parameter, as suggested in this
Letter, is a powerful way to enhance imaging performance
in a variety of challenging scenarios.

This work was supported by the National Institutes of
Health, National Institute of General Medical Sciences
Grant No. R01GM085437.
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