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We demonstrate, theoretically and experimentally, that a four-wave mixing parametric interaction is able
to arrest the collapse of a two-dimensional multicolor beam in an instantaneous Kerr medium. We consider
two weak idlers interacting via a third order nonlinearity with two pump beams and we show that a class of
collapse-free quasisolitary solutions can be experimentally observed in a normal dispersion Kerr glass. This
observation is sustained by rigorous theoretical analysis demonstrating the stability of the observed self-
trapped beams.
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The nonlinear Schrödinger equation (NLSE) describes
many physical systems in optics and condensed matter.
Although the NLSE sustains solitary propagation in 1þ 1
dimensions [ð1þ 1ÞD] [1,2], the nonlinear wave propaga-
tion is unstable and undergoes collapse in higher dimen-
sionality: the possibility of arresting the blowup has
remained a hot topic [3,4] since the first studies of wave
collapse [5,6]. In optics, stable solitary propagation in
2Dþ 1 NLSE-like systems can be observed in materials
showing nonlinear saturation, nonlocality [1,3,7,8], in
engineered materials, e.g., in lattices [3,9], in stacked layer
systems [10,11], or by acting on the beam amplitude and
phase profile, e.g., in vortex or spiraling solitons [12,13].
Controlling the blowup of bell-shaped beams in homo-
geneous Kerr media, however, remains a challenge. Coping
with the collapse and postcollapse of the beam is indeed
necessary whenever high-power propagation is involved
[14–18].
In this Letter we demonstrate the possibility of managing

the collapse dynamic of an optical beam propagating in a
pure Kerr material by addressing its mutual interaction via
parametric four-wave mixing (FWM) with an additional
control beam.
Although the nonlinear coupling of two waves by cross-

phase modulation (XPM) always leads to a reduction of the
power collapse threshold [19], a parametric interaction can
counteract the collapse [20,21]. Parametric solitons sus-
tained by three wave mixing have a large impact in
nonlinear optics [22], but they are scarcely addressed in
the FWM case, mostly because their effect can be small
with respect to self-focusing [23,24].
Collapse arrest has been theoretically addressed in the

case of highly mismatched coupling between a beam and its
weak third harmonic (TH) [24]; this parametric interaction
induces an equivalent χð5Þ nonlinearity [25,26] that can
counteract the collapse [2] for a proper phase mismatch. TH

generation (THG) has been observed to enhance the self-
guiding property of femtosecond filamentation in the
framework of a rich dynamics involving dissipative and
temporal effects [27] and, more recently, ionization effects
[28]. An experiment on the characterization of high-order
Kerr nonlinearities in gases [29] has been interpreted as a
THG-induced higher order nonlinearity [30]. The challenge
in the observation and the control of the TH cascaded
χð5Þ nonlinearity is ultimately connected to the large
mismatch between the fundamental and the TH that the
refractive index dispersion usually imposes to the
interaction.
Here we introduce a propagation geometry that supports

collapse-free propagation of ð2þ 1ÞD quasisolitons, i.e.,
solitary waves with weakly oscillating radiative tails, in a
regime that can be found in a large class of materials by
properly selecting the spectral content of the pump beams.
We consider the nonlinear interaction of two pumps with

electric field envelopes Pð1;2ÞðX; Y; ZÞ slowly varying
along Z, with frequencies ωðp1;p2Þ ¼ ω0∓Δω, expressed
by their frequency difference Δω with respect to their
central frequency ω0. Their wave vectors are
kðp1;p2Þ ¼ ωðp1;p2Þn=c, with c speed of light in vacuum
and n refractive index.
When the two pumps are close in frequency, the most

significant parametric contribution usually involves the
generation of two idlers Sð1;2ÞðX; Y; ZÞ with frequencies
regulated by the two FWM interactions ωðs1;s2Þ ¼
2ωðp2;p1Þ − ωðp1;p2Þ ¼ ω0 � 3Δω and wave vectors
kðs1;s2Þ. Each interaction is associated with a phase mis-
match Δk1 ¼ 2kp2 − kp1 − ks1, Δk2 ¼ 2kp1 − kp2 − ks2. A
third FWM interaction involving the mixing ωs1 þ ωs2 ¼
ωp1 þ ωp2 and the phase matching Δk3 ¼ kp1 þ kp2 −
ks1 − ks2 ¼ Δk1 þ Δk2 also occurs.
We start by defining a set of equations for the linearly

copolarized waves with the wave vector k0 ¼ ω0n=c, the
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central frequency ω0, and the scaling quantity σ ¼ Δω=
ð2ω0Þ. The nonlinear constant is γ0 ¼ 3χð3Þω2

0=c
2, χð3Þ being

the nonlinear third order susceptibility:

2ik0
1∓σ

∂ZPð1;2Þ þ
∇2

X;YPð1;2Þ
ð1∓σÞ2 þ γ0KðP1;P2ÞPð1;2Þ

þ γ0FðP1;P2Þ ¼ 0;

2ik0
1� 3σ

∂ZSð1;2Þ þ
∇2

X;YSð1;2Þ
ð1� 3σÞ2 −

2k0Δkð1;2Þ
1� 3σ

Sð1;2Þ

þ γ0KðS1;S2ÞSð1;2Þ þ γ0FðS1;S2Þ ¼ 0: ð1Þ

KU ¼ 2ðjP1j2 þ jP2j2 þ jS1j2 þ jS2j2Þ − jUj2 is the non-
linear term accounting for both self-phase modulation and
XPM for U ¼ fP1; P2; S1; S2g. The FWM terms are

FðP1;P2Þ ¼ 2P�
ð1;2ÞPð2;1ÞSð2;1Þ þ S�ð1;2ÞP

2
ð2;1Þ

þ 2P�
ð2;1ÞSð1;2ÞSð2;1Þ;

FðS1;S2Þ ¼ P�
ð1;2ÞP

2
ð2;1Þ þ 2S�ð2;1ÞPð1;2ÞPð2;1Þ: ð2Þ

We first address a regime of weak idlers, occurring for large
phase mismatches Δkð1;2Þ, resulting in the idlers Sð1;2Þ≈
γ0ð1� 3σÞ=ð2k0Δkð1;2ÞÞP�

ð1;2ÞP
2
ð2;1Þ. Correspondingly, from

the first of Eqs. (2) we get

FðP1;P2Þ ¼
�
γ0

1∓3σ

k0Δkð2;1Þ
jPð1;2Þj2jPð2;1Þj2

þ γ0
1� 3σ

2k0Δkð1;2Þ
jPð2;1Þj4

�
Pð1;2Þ: ð3Þ

Equations (3) show that theweakFWMinteraction acts as an
equivalent quintic XPM contribution. For a normal
dispersion medium kð2Þðω0Þ ¼ ∂2k=∂ω2 > 0 we obtain
Δkð1;2Þ ≈ −4kð2Þðω0ÞΔω2, corresponding to a defocusing
action which arrests the collapse and grows when Δω is
decreasing, as long as the cascaded regime holds.Differently
from the case of THG, [24] where the phase mismatch
cannot be controlled and is usually very large, the frequency
difference between the pumps governs the strength of the
stabilizing defocusing mechanism.
We then consider the stationary solutions of Eqs. (1).

Given a reference spatial waist X0 and a diffraction
length Z0 ¼ 2k0X2

0, we introduce the normalized coordi-
nates z¼Z=Z0, x¼y¼X=X0, the phasemismatchesΔð1;2Þ¼
Δkð1;2ÞZ0, and the amplitudespð1;2Þ ¼ ffiffiffiffiffi

γ0
p

X0Pð1;2Þeiðβ∓ΔβÞz

and sð1;2Þ ¼ ffiffiffiffiffi
γ0

p
X0Sð1;2Þeiðβ�3ΔβÞz, obtaining

i∂zpð1;2Þ
1∓σ

þ∇2
x;ypð1;2Þ
ð1∓σÞ2 −

β∓Δβ
1∓σ

pð1;2Þ

þ Kðp1;p2Þpð1;2Þ þ Fðp1;p2Þ ¼ 0;

i∂zsð1;2Þ
1� 3σ

þ ∇2
x;ysð1;2Þ

ð1� 3σÞ2 −
sð1;2Þ

αð1;2Þð1� 3σÞ
þ Kðs1;s2Þsð1;2Þ þ Fðs1;s2Þ ¼ 0; ð4Þ

with 1=αð1; 2Þ ¼ β � 3Δβ þ Δð1;2Þ. We are explicitly con-
sidering the nonlinear propagation constants β∓Δβ and
β � 3Δβ for the pumps and idlers, respectively. The non-
linear terms Ku and Fu for u ¼ fp1; p2; s1; s2g are defined
as for Eqs. (1).
For each wave we define the photon flux Qu ¼

1=ð1þ σuÞ
R juj2dxdy, with u ¼ fp1; p2; s1; s2g and

σu ¼ f−σ; σ; 3σ;−3σg. System (4) is not integrable but
possesses the following three integrals of motions
[31]. It conserves the Hamiltonian, defined as H¼R hP

uðj∇uj2Þ=ð1þσuÞ−
PP

u;vð1−1
2
δu;vjuj2jvj2Þ

i
dxdyþ

HF with u, v summed over fp1; p2; s1; s2g. HF ¼
−2Re

R ½2p1p2s�1s
�
2 þ p2

1p
�
2s

�
2 þ p2

2p
�
1s

�
1�dxdy is the FWM

contribution. It possesses the standard Manley Rowe
integral for parametric interactions, Q ¼ QP1 þQP2þ
QS1 þQS2, which takes into account the conservation of
the total photon number and of the cross photon flux
J ¼ QP1 −QP2 þ 3QS2 − 3QS1, regulating the exchange
of photons between the pumps and the signals. We look for
single hump, radially symmetric self-similar solutions,
calculating the nonlinear modes of Eqs. (4) in function
of the mismatch parameters. This is equivalent to address
the variational problem δðH þ βN þ ΔβJÞ ¼ 0: the

FIG. 1 (color online). Self-localized solutions of the normalized
system, Eqs. (4). The nonlinear propagation constants are β ¼ 1
and Δβ ¼ 0. The relative frequency scaling quantity is σ ¼ 0.
The self-localized profiles p1 (thick line, black), p2 (thick dashed
line, black), s1 (narrow line, red), s2 (narrow dashed line, red) are
shown in the function of the space coordinate x for several values
of the phase mismatches parameters αð1;2Þ. (a) αð1;2Þ ¼ 0.0625,
(b) αð1;2Þ ¼ −0.0625, (c) αð1;2Þ ¼ �0.0625, (d) αð1;2Þ ¼ 0.5,
(e) αð1;2Þ ¼ −0.5, (e) αð1;2Þ ¼ �0.5.
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solutions are the extrema of the Hamiltonian, where β and
Δβ are Lagrange multipliers. The system also conserves the
transverse and angular momentum [31], although such
quantities do not appear in this variational problem.
Because of the scaling properties of Eqs. (4) [2] we limit
our description to the case β ¼ 1without loss of generality;
in Figs. 1 and 2 we show representative cases of the profiles
and photon fluxes, respectively, for Δβ ¼ 0 and σ ¼ 0. We
could find single-hump modes for the pump in the whole
exploited range of parameters for αð1;2Þ. For jαð1;2Þj → 0 the
solutions collapse to Townes-like modes [2], while for large
values of jαð1;2Þj the energy is mostly contained in the
idlers. In the latter regime, however, additional nonlinear
products should be included in the model.
Notably, we could find nonlinear modes also when one

or both αð1;2Þ are negative, corresponding to a defocusing
nonlinearity [Eq. (3)]. Here system (4) admits oscillating
solutions for the idlers regulated by the parameter αð1;2Þ,
consistently with its linear solutions [Figs. 1(c) and 1(f)].
Such oscillations may eventually lead to energy leaking in
propagation, but this effect is negligible for small jαð1;2Þj.
These bound states between solitary solutions and radiative
components are denoted as quasisolitons and have been
previously found in THG systems [24]. The stability
properties of the soliton family are studied with the
well-known Vakhitov-Kolokolov (VK) criterion [32],
which allows discriminating whether or not a perturbation
of a solitary solution grows along with propagation. For
stability consideration, it rigorously applies to the node-
free, lowest energy soliton family branch. For solutions
possessing nodes, the VK theorem provides information
only on the subspace of perturbations that are zero in the
nodes of the solutions, and hence it is not usually sufficient

for stability. This is relevant to the case of the oscillating
solutions as in Figs. 1(b), 1(c), 1(e), 1(f): the VK criterion
will not give us complete information on the perturbations
of the oscillating idlers. However, the VK is sufficient for
claiming stability against perturbations of the pumps. This
is particularly significant especially when the pumps
contain most of the energy. The VK threshold for insta-
bility, e.g., for the NLSE, is usually expressed in terms of
the derivative of the energy integral with respect to the
nonlinear propagation constant, or eigenvalue of the prob-
lem. Referring to Eqs. (4), by using a standard approach for
two coupled equations as, e.g., in Refs. [22,33], we find
that the VK threshold is ∂βQ∂ΔβJ − ∂βJ∂ΔβQ ¼ 0. Such a
threshold is reported in Fig. 2 in white, superimposed to the
photon fluxes. As expected, the Townes-like modes for
α1;2 → 0 are at the threshold; i.e., here the FWM is
negligible and a standard critical collapse for the NLSE
occurs. For both α1;2 > 0 the system is unstable, consis-
tently with the self-focusing nature of the FMW interaction

FIG. 2 (color online). (a) Total photon flux Q ¼ QP1 þQP2þ
QS1 þQS2, (b) cross photon flux J ¼ QP1 −QP2 þ 3QS2−
3QS1, (c) pump Qp1, and (d) idler Qs1 photon fluxes vs the
mismatch parameters αð1;2Þ for nonlinear phase constants β ¼ 1
and Δβ ¼ 0. The white line marks the VK threshold, where the
critical collapse takes place. The unstable region is enclosed in
the section where α1 > 0 and α2 > 0.

FIG. 3 (color online). Evolution of peak intensity (a) and waist
(b) of the pump p1 for the mismatches parameters Δð1;2Þ as
calculated from Eq. (4). Δ1 ¼ Δ2 (values in the
legend) and the beam input profiles are p1ðz ¼ 0; x; yÞ ¼
p2ðz ¼ 0; x; yÞ ¼ 1.078 exp½−ðx2 þ y2Þ=1.52� and s1ðz ¼ 0;
x; yÞ ¼ s2ðz ¼ 0; x; yÞ ¼ 0.

FIG. 4 (color online). Sketch of the experimental setup. The
two pumps at 1500 and 1720 nm are obtained from an optical
parametric amplifier (OPA). Polarizer crystals (PC), half wave
plates (HWP), a short pass filter (SPF) are shown together with
the energy monitors photodiodes (PD) and the camera (CCD).
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in this space of parameters. This analysis also reveals that
just one negative α may be sufficient to stabilize the
collapse. We verify the stability properties by resorting
to simulations of Eq. (4). As an example, we report in Fig. 3
the evolution of the peak intensity (a) and the beam waist
(b) for the pump p1 using as input two Gaussian beams for
the pumps and no field for the idlers, as specified in the
caption. Little evolution is found for Δð1;2Þ ¼ −20, where a
solution close to the solitary beam is excited. The collapse
is arrested for Δð1;2Þ < 0 in all the cases presented here,
although a strong self-focusing dynamic is evident for large
negative values of Δð1;2Þ, where the FWM is weaker. The
collapse is enhanced for positive values of Δð1;2Þ.
In the experiments, the two pumps are generated by an

optical parametric amplifier OPA-800C, driven by a Ti:
sapphire laser at 1 kHz repetition rate (Fig. 4). The source
produces a signal and an idler of 1 ps duration, respectively,
tunable in the ranges 1300–1600 nm and 1600–2100 nm.
Our experimental data are recorded at λp1 ¼ 1500 nm
and λp2 ¼ 1720 nm. We use a nonlinear Schott glass
[34] (SF6), featuring normal dispersion around 1600 nm.
The propagation length is 6 mm; note that the temporal
dispersion length is 20 cm for the 1 ps pulses (the glass
second order dispersion coefficient is ≈50 ps2=km). The
beam waists are ≈20 μm (full details are in the caption of
Fig. 6). The output profiles are imaged by an InGaAs CCD
camera (Xeva-1.7-640, Xenics). The 1720 nm pump
damages the material at the critical energy Ep2 of
1.8 μJ; at wavelength 1500 nm for energies Ep1 above
1.4 μJ the beam collapses in a strong flickering regime that
we identify as the beam postcollapse. Such energy is
consistent with the reported value of the nonlinear coef-
ficient [34] n2 ≈ 2 × 10−19 cm2=W.

Figure 5 shows the output spatial intensities profiles of
the 1500 nm beam at several input energies Ep1, for
Ep2 ¼ 0, 0.3 and 0.6 μJ energies of the 1720 nm beam
(top-bottom). Figure 6 shows the output beam size vs the
input pulse energy. The superimposed beam clearly enhan-
ces the self-focusing at low Ep1 energies [Figs. 5(e)–5(g)
and 5(i)–5(j)], where the XPM plays a major role, but at
higher energies [Figs. 5(h) and 5(k)–5(l)] the self-focusing
is clearly reduced, as the beam waist never reaches the
minimum size measured close to the collapse threshold in
the case of single-beam propagation. We could not detect a
substantial drop in the beam output energy, indicating
negligible nonlinear absorption. At larger energy values the
beam manifests an unstable dynamic. These observations
are consistent with the previous analysis. The experimental
data are fitted by solving an extended version of Eqs. (1).
We included the temporal dynamic propagation of the pulse
by adding a second order dispersion term and solving the
resulting 3Dþ 1 model in radial symmetry, with numerical
parameters extracted by the Schott tables [34] and reported
in the caption of Fig. 6.
In conclusion, we demonstrated a set of stable 2Dþ 1

quasisolitons in a pure Kerr media sustained by a FWM

FIG. 5. Images of the 1500 nm beam collected at the glass
sample output. (a),(b),(c),(d) Output for Ep1 ¼ 0.5, 0.8, 1.1, and
1.4 μJ input beam energies in the absence of the 1720 nm beam.
(e),(f),(g),(h) and (i),(j),(k),(l) Same as (a),(b),(c),(d) for a
collinear 1720 nm beam with Ep2 ¼ 0.3 μJ and Ep2 ¼ 0.6 μJ
input energies, respectively.

FIG. 6 (color online). Evolution of the 1500 nm output beam
size vs input energy. Markers: experimental data for Ep2 ¼ 0
(stars, black), Ep2 ¼ 0.3 μJ (points, green) and Ep2 ¼ 0.6 μJ
(crosses, red) input energies of a collinearly propagating 1720 nm
beam. The beam size is extracted with a Gaussian fit of the output
images; the accuracy is within the scale of the marker size. Lines:
simulations of Eqs. (1) including the temporal dynamics of the
pulse. For the simulation, we used Gaussian beams with waists
wp1 ¼ 20 μm and wp2 ¼ 15 μm focused at 0 and 2.54 mm from
the entrance, respectively, as measured by beam profiling. The
pulse duration is 1 ps as measured by the autocorrelation. The
propagation length is 6 mm, Δk1 ¼ 0.7 mm−1, and Δk2 ¼
4 mm−1. The refractive index is n ¼ 1.76 and the dispersion
coefficient is 50 ps2=km. The critical energy is 1.2 μJ, calculated
as a fitting parameter of the single collapse beam curve. The
energy values also include 20% of injection losses.
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interaction. The system involves the interaction of two
pumps of different colors in a weak FWM regime with two
idlers, and we have shown, theoretically and experimen-
tally, collapse-free propagation in instantaneous Kerr
media. The stabilization mechanism is given by higher
order cascaded nonlinearities in normal dispersion.
Notably, collapse-free propagation in a nonlinear Kerr
material with normal dispersion also allows the generation
of X waves [20,35,36], optical pulses with a characteristic
X shape in the space-time or angle-wavelength domain.
Although the study of X waves is beyond the scope of this
Letter, the interpretation of the nonlinear phase exchange
among the components in terms of higher order defocusing
nonlinearity opens up new perspectives for understanding
such waves.
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