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We discuss energy barriers and their relationship to self-correcting quantum memories. We introduce the
solid code, a 3D version of Kitaev’s surface code, and then combine several solid codes using a technique
called welding. The resulting code is a ½½OðL3Þ; 1; OðL4=3Þ�� stabilizer code with an energy barrier of
OðL2=3Þ, which is an exponential improvement over the previous highest energy barrier in 3D. No-go
results are avoided by breaking microscopic translation invariance.
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An outstanding challenge for the development of a
quantum computer is whether it is possible to build a
quantum hard drive. Such a device could be used to store
a quantum state and protect it from decoherence without the
need to actively detect and correct errors much like a
ferromagnetic hard drive does when it is powered down.
The 4D toric code Hamiltonian [1,2], a spin system, is a
theoretical example of such a self-correcting quantum
memory. It uses a macroscopic energy barrier to prevent
noise from accumulating and corrupting stored quantum
information. It is a major open question whether such a
system can exist in less than four dimensions. The problem
is intimately related to the problem in condensed matter
physics of whether topological order can exist at nonzero
temperatures [3]. Most results for self-correcting quantum
memories in 2D and 3D to date have been negative [4–6] or
use operators of unbounded strength [7,8]. One exception
has been the cubic code [9], but that too has an energy
barrier of only logðLÞ. In this Letter, we improve the best-
known energy barrier for spin Hamiltonians with topologi-
cal order from OðlogLÞ to OðL2=3Þ.
Both the cubic code and the code presented in this Letter

can be shown [10] to give a theoretical increase in storage
time when the system size is increased up to a temperature-
dependent maximum. The goal is to have a storage time
that scales exponentially with the volume of the system.
The result presented in this Letter can be viewed as a
stepping stone towards this goal.
To gain intuition, consider the ferromagnetic hard disk

drive. It uses the net magnetization of a ferromagnet to store
bits of information. At room temperature it is stable against
a global change in polarization. If the magnetization of a
small domain flips, there is an energy penalty proportional
to the perimeter of the domain. This energy barrier keeps
these domains small, which leads to a stable classical
memory that is self-correcting.
The requirements for quantum memories are more

stringent than those for classical memories. Classical
memories need only keep information safe while quantum
memories must simultaneously hide it. Luckily, there are

many local error correcting codes that achieve this, such as
the 2D and 3D toric code and color codes [11–13]. These
codes hide the stored superposition by making the observ-
ables depend on the topology of the system, not on any
local observables.
The toric codes, color codes, cubic code, and the code

presented in this Letter are all examples of stabilizer codes.
We review stabilizer codes now. We use the word qubit
instead of spin to emphasize that the subsystems could be
any two-level system. The Pauli group is defined by

G¼fðiÞkP1 ⊗ � � �⊗Pn∶ k∈ f0;1;2;3g;Pi ∈ fI;X;Y;Zgg;
ð1Þ

where X, Y, and Z are single-qubit Pauli operators. A
stabilizer group S is a subgroup of the Pauli group such that
−I∉S. This implies that it is Abelian and can be simulta-
neously diagonalized so that there exists a subspace Hc,
called the code space, such that for all jψi ∈ Hc and for all
h ∈ S, hjψi ¼ jψi. Given a generating set R, where
hRi ¼ S, we form the Hamiltonian H ¼ −

P
h∈Rh. The

ground-state subspace and the code space are the same.
We can apply error correcting operations based on

measurements of operators in the stabilizer group that
bring the state back into the code space. A system is self-
correcting when thermalization keeps the error corrected
state very close to the original. The goal is to design a
Hamiltonian that ensures that any sequence of local
operations that enacts a logical operation on the error
corrected state must at some point have a macroscopically
large energy. The minimum such energy is called the
energy barrier.
For simplicity, we choose logical operators in the Pauli

group that commute with the stabilizer group. The code in
this Letter has a generating set where each generator is a
tensor product of either exclusively X operators or exclu-
sively Z operators [14]. We consider logical operators of
the same type.
The motivation to study the energy barrier comes from

considering the lifetime of a memory subject to thermal
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noise. Thermal noise is typically modeled [2,10,15,16] by a
set of local jump operators. The rate to jump from state i
with energy Ei to state a state j with energy Ej is denoted
by rij and satisfies rij ¼ e−βðEj−EiÞrji. Thus, the larger the
energy barrier, the more noise is suppressed. The hope is
that if we can find a large energy barrier in 3D, then the
system will be a good quantum memory.
Main result.—There exists a local stabilizer Hamiltonian

in 3D with an energy barrier of OðL2=3Þ where the
Hamiltonian is composed of OðL3Þ qubits and the qubits
are of finite density. By finite density we mean that a finite
number of qubits fit into a finite volume reference box. By
local we mean that the terms in the Hamiltonian act on a set
of qubits contained in another finite reference box.
Haah [17] proved that for local translation-invariant

stabilizer codes, the highest energy barrier is OðlogLÞ.
This improves a no-go theorem by Yoshida [5]. So how can
the result in this Letter hold? The code in this Letter is
constructed from macroscopic blocks. Each block satisfies
the result by Haah. These macroscopic blocks are joined
together, welded, into a macroscopic lattice. The welded
code is translation invariant over a length that grows with
the system size. This avoids the no-go results.
Solid codes.—We define the solid code by analogy to the

surface code [1], i.e., a 3D toric code [12] with rough and
smooth boundaries. These boundary conditions determine
the logical operators, one of which has a constant energy
barrier. This means the solid code cannot store quantum
information though it is an important building block to the
welded code.
We define the generators of the solid code with respect to

a graph, shown in Fig. 1 (qubits are labeled by edges). The
graph is mostly a cubic lattice with d × d × d primitive

cells except that horizontal edges are missing from the top
and bottom boundaries of the graph. We call these
boundaries rough. Terms in the Hamiltonian are labeled
by vertices of the graph and faces of the primitive cells. We
refer to the faces as plaquettes. The vertices are

V ¼ fv ¼ ðv1; v2; v3Þ∶ vi ∈ f1;…; Ngg: ð2Þ

Using the unit vectors n1 ¼ ð1; 0; 0Þ, n2 ¼ ð0; 1; 0Þ, and
n3 ¼ ð0; 0; 1Þ, the edges are

E ¼ ffv; vþ n3g∶ v ∈ V; v3 ≠ Ng
∪ffv; vþ n2g∶ v ∈ V; v3 ≠ 1; v3 ≠ Ng
∪ffv; vþ n1g∶ v ∈ V; v3 ≠ 1; v3 ≠ Ng: ð3Þ

Let ΓðvÞ be the set of edges that neighbor a vertex v. For
each vwith jΓðvÞj > 1 define the term hXv ¼ Q

e∈ΓðvÞXe. Let∂f be the set of edges on the boundary of a plaquette f. For
each plaquette f define a term hZf ¼ Q

e∈∂fZe except that
plaquettes at the top and bottom of the lattice are missing an
edge. The Hamiltonian is a sum over elements of the set of
vertices V and the set of faces F:

H ¼ −
X

v∈V∶jΓðvÞj>1
hXv þ −

X

f∈F
hZf : ð4Þ

The X and Z terms commute and so generate a stabilizer
group. The ground-state subspace of the Hamiltonian is
exactly the code space of this stabilizer group.
The logical operator X̄ of the solid code resembles an

open membrane. Multiplying vertex operators generates
closed membranes of qubits and horizontal pairs of open
membranes. These pairs can be made to be far apart so that
each membrane overlaps with a disjoint set of plaquettes.
Hence, each membrane commutes with each term in the
Hamiltonian, yet is not generated by them. We conclude
that the logical operator X̄ is a tensor product of single-
qubit X operators on a single horizontal membrane.
The logical operator Z̄ resembles an open string.

Multiplying plaquette operators generates closed strings,
strings starting and ending on the same rough boundary,
and pairs of strings extending between opposite rough
boundaries. These pairs of open strings can be made to be
far apart so that each string overlaps with a disjoint set of
vertex operators. Hence, each open string commutes with
each term of the Hamiltonian, yet is not generated by them.
We conclude that the logical operator Z̄ is a tensor product
of single-qubit Z operators on a single string extending
between opposite rough boundaries. See Fig. 1.
The set of logical operators completely determines the

ground-state degeneracy. There are two distinct nontrivial
logical operators, X̄ and Z̄. Because they anticommute, we
can only diagonalize one of them at a time. Hence, the
ground-state degeneracy is 2.

FIG. 1. A solid code with qubits represented by edges. The
following operators shaded darker: a plaquette operator, a star
operator, and a logical Z operator.
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The logical operator Z̄ has a constant energy barrier.
Understanding why is key to doing better. Applying a Z
operator on a single qubit violates either one or two terms.
We call these defects. By flipping a qubit in a line starting
and ending on opposite rough boundaries, we move a
single defect across the lattice with no more than a constant
energy penalty. One way to create a large energy barrier is
to force this string of bit flips to split many times. To do
this, we need qubits such that errors on them create three or
more defects.
Welded solid codes.—In this section we achieve a power-

law energy barrier by combining several solid codes into a
3D lattice. The final lattice is not a regular lattice. This is
because each block is bent and stretched to match up with
each other into a macroscopic lattice. The procedure for
combining blocks of code is called welding. First, we will
show how to weld three solid codes together, analyze the
shape of the logical operators, and show that the energy
barrier has increased. We then weld several solids into a
lattice.
To gain intuition, consider a 1D Ising model of a finite

length. The Hamiltonian is
P

n−1
i¼0 −ZiZiþ1. The ground

state has two degenerate eigenstates j00…0i and j11…1i.
Suppose we want to flip every qubit in a sequence that
minimizes the number of defects. The best we can do is to
flip the first, second, third, etc. qubits in a line until all of
the qubits have been flipped. This sequence creates a single
defect and moves it from one end of the string to the other.
Welding is like combining three such strings so each string
shares the nth qubit. When we try to move a defect past this
shared qubit, it splits into two. Thus, the energy increases.
For the welded solid code there is a 2D boundary between
3D blocks of qubits. Defects split when moving past them.
We now describe this boundary where defects split. We

combine three solid codes along their rough boundaries.
For each solid we identify qubits on the bottom rough
boundaries with each other. More precisely, for all
i; j ∈ f1;…; Ng, the qubit labeled by ðfi; j; 0g; fi; j; 1gÞ
in the first solid code is the same as the corresponding qubit
in the second and third solid codes. Because the X- and
Z-type terms no longer commute, we update all local
Z-type stabilizers to commute with the X-type stabilizers.
The rule is that whenever Z-type stabilizers agree on the
shared qubits of the three solids, they are combined,
welded, into a single operator. For a Z-type operator h,
define QðhÞ to be the qubits that h acts on nontrivially. A
set of Z-type operators fh1;…; hng is said to be welded
together into a Z-type operator h when QðhÞ ¼ ∪iQðhiÞ.
We call the resulting code a welded code. A more thorough
account of the theory of welding can be found in the
Supplemental Material [18] and Ref. [19].
Next, we show that the new code, the three welded

solids, encodes only a single qubit by showing that all
nontrivial Z-type logical operators are equivalent. The
Z-type logical operators from each solid get welded

together so that the new logical operator Z̄ resembles three
strings emanating from a single qubit on the shared
boundary. See Fig. 2. After welding, the Z-type stabilizers
have the following shapes: half-loops on rough boundaries,
loops in the bulk of each solid, three welded half-loops on
the shared rough boundary, and pairs of logical Z operators.
There can be no other Z-type logical operator. If a Z-type
operator acts with an even number of Z operators on the
shared qubits, then it is in the stabilizer group, and if it acts
with an odd number of Z operators on the boundary, then it
is equivalent to the operator composed of three welded
strings. Since there is only one nontrivial Z-type logical
operator, the degeneracy is 2.
A defect caused by Z errors would split into two moving

through this shared boundary, an increase in energy. This is
because a single-qubit Z operator applied to this shared
boundary creates three violated terms, one for each solid
block. Thus, the energy barrier for the logical operator Z̄
has increased from 1 to 2.
In order to increase the energy barrier to a power law, we

generalize welding three solids on a single boundary to
welding many solids into a lattice. We label the solids by
their rough boundaries. A rough boundary is denoted by
Wi. In the previous example we had the set of solids
E ¼ ffW1;W4g; fW2;W4g; fW3;W4gg, and they all share
the rough boundary W4. In this notation, the welded rough
boundaries act as“fat” vertices and the bulk of the solid
codes act as “fat” edges of a graph G ¼ ðV ¼ fWig; EÞ.
We weld the solid codes into the graph of a 3D cubic lattice
to achieve a particularly high energy barrier.
We deduce the energy barrier of the logical operator Z̄ of

the welded cubic lattice by looking at the rough boundaries
of each block. If there is an odd number of Z errors on the
rough boundaries of a particular solid code, then there must
be at least one defect in the bulk of that solid. Hence, if we
weld the solid codes into a graph G, then the energy barrier

FIG. 2. Three solid codes welded together with qubits repre-
sented by edges. The bifurcating Z̄ operator is shaded darker.
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of the welded string operator is at least as big as the energy
barrier for an Ising model Hamiltonian H ¼ P

fi;jg∈E −
ZiZj with precisely the same graph G. If G is a 3D cubic
lattice of width R, then the energy barrier for the logical
operator Z̄ is greater than OðR2Þ. This bound can be
saturated provided we never create more than one defect
within the bulk of any solid.
We deduce the energy barrier of the logical operator X̄ in

a similar way as for the logical operator Z̄. The logical
operator X̄ is an X-type operator and hence remains
unchanged. It remains a membrane in one of any solid
code blocks. We show a lower bound for the energy barrier
by considering the contribution to the energy barrier from
the vertical plaquettes only, i.e., plaquettes in the y-z and
z-x planes of each solid, leaving out the plaquettes in the
x-y plane. For each vertical surface of plaquettes, defects
can move up and down without creating new vertical
defects, but moving between these vertical regions creates a
vertical defect in each neighboring region, similarly to the
case of the solid regions. These “flat” regions are connected
to each other in a 2D square lattice of widthOðdÞ, provided
each solid isOðdÞ qubits wide. Again, the energy barrier of
this horizontal membrane is given by the energy barrier of
the Ising model on a 2D square lattice. So the energy barrier
is lower bounded by OðdÞ. This bound can be saturated,
even with horizontal plaquettes, provided that the mem-
brane is grown horizontally and in a single domain.
Finally, the energy barrier of solid codes welded in a

cubic lattice is the minimum of the two energy barriers:
OðdÞ and OðR2Þ. The total number of qubits is Oðd3Þ
qubits per solid with OðR3Þ solids, which leads to the
number of qubits N ∼Oðd3R3Þ. The maximum energy
barrier for a fixed number of qubits N is the minimum of
the X and Z energy barriers. Thus, the maximum energy
barrier happens when OðdÞ ∼OðR2Þ, leading to an energy
barrier of δE ∼OðN2=9Þ. The qubits can be placed in a box
of side lengths of OðLÞ so that the energy barrier is
OðL2=3Þ. This demonstrates our main result.
Discussion.—We have constructed a code that has an

exponentially higher energy barrier than the the logarithmic
bound derived by Haah [17]. We achieved this by tuning
the length over which the code is periodic to a macroscopic
distance.
A lower bound on the storage time t was derived in

Ref. [10]. For any stabilizer code Hamiltonian with an
energy barrier δE, number of encoded qubits kðLÞ, and the
error model of a Hamiltonian in the weak coupling limit,
t ∼ ðeβδE=NÞ2−kðLÞ when N ¼ OðL3Þ≲ eβ. This leads to a
lower bound of t ∼ eβe

ð2=9Þβ
for N ≲ eβ for the welded solid

code. Although an upper bound is not known, it is unlikely

that the memory time will go up arbitrarily with system
size [20].
Further progress might be made in considering non-

periodic codes or local error correction with engineered
dissipation [21–24].
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