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Originally, the observation of the polar Kerr effect in cuprates [1] was interpreted as the evidence for spontaneous time-
reversal-symmetry breaking. Then, it was proposed in our Letter and Refs. [2–5], as well as in an earlier paper [6], that the
polar Kerr effect in cuprates can be explained by a chiral gyrotropic order that breaks inversion symmetry, but preserves
time-reversal symmetry. However, it was shown in a general form using reciprocity arguments by Halperin [7] and
confirmed by recent papers [8,9] that the reflection matrix of light must be symmetric for a time-reversal-invariant system,
so the polar Kerr effect must vanish. This prompted retractions [10,11] of the proposals that a chiral order without time-
reversal-symmetry breaking can explain the polar Kerr effect. In this Erratum, we show that, while the electromagnetic
constituent relations are correctly derived in our Letter and do contain a bulk gyrotropic term, the reflection matrix of light
is, nevertheless, symmetric (in agreement with Refs. [7–11]), so our proposed model cannot explain the experimental
observation [1] of the polar Kerr effect in cuprates [12].
The confusion stems from different treatments of a surface contribution to the constituent relations in different papers.

Reference [6] employed the bulk relation 4πP ¼ γ∇ × E, where E and P are the electric field and polarization, and γ is the
coefficient of natural optical activity [13]. However, for a system occupying semi-infinite space z > 0 in contact with
vacuum at z < 0, the coefficient γðzÞ has a stepwise dependence on coordinate z: γðzÞ ¼ 0 for z < 0 and γðzÞ ≠ 0 for z > 0.
Reference [14] proposed the relation 4πP ¼ ∇ × ðγEÞ ¼ γ∇ × Eþ ð∇zγÞ × E containing the delta-function surface term
γδðzÞẑ × E. Substituting these relations into Maxwell’s equations, Refs. [6] and [14] obtained opposite signs for the polar
Kerr effect. However, both relations are wrong, as pointed out in Ref. [9], and the correct relation is
4πP ¼ γ∇ × Eþ ð1=2Þð∇zγÞ × E, as employed in Ref. [10] after correcting an arithmetic error in Ref. [15]. This relation
can be obtained by variation P ¼ δS=δE of the effective action S ¼ ð1=8πÞ R dωd3rγðzÞE · ð∇ × EÞ, and it gives zero polar
Kerr effect [10].
Equation (4) in our Letter utilized the incorrect formula from Ref. [14] claiming a nonzero Kerr angle. However, our

microscopic derivation of the effective action for a helical structure of loop currents is correct. Moreover, the advantage of
our discrete lattice model over continuous models is that the correct surface term in the constituent relations can be derived
unambiguously without confusion. The electromagnetic action in our model is given by Eq. (9) in our Letter

S ¼ −
~γ

4π

X∞

n¼0

Z
dωd2rðEn × NnÞ · ðEnþ1 × Nnþ1Þ; ð1Þ

where n is an integer coordinate labeling cuprate layers in the z direction, and the parameter ~γ ¼ 4πΛβ2 encapsulates the
magnetoelectric coefficient β and the magnetic coupling Λ. The in-plane anapole vectors Nn are arranged in a helical
structure, so that Nnþ1 is rotated by π=2 around the z axis relative to Nn (i.e., N0 ¼ x̂N, N1 ¼ ŷN, N2 ¼ −x̂N; � � �).
Although the vectors Nn change sign upon the time-reversal operation, the action (1) is time-reversal invariant, because it is
bilinear in Nn. The action (1) generates different expressions for the electric polarizations Pn in the bulk for n > 0 and P0 at
the surface layer at n ¼ 0, because the latter has only one neighboring layer:

Pn ¼
1

d
δS
δEn

¼ ~γ

4πd
Nnþ1½Nn · ðEnþ1 − En−1Þ�; P0 ¼

1

d
δS
δE0

¼ ~γ

4πd
N1ðN0 · E1Þ; ð2Þ

where d is the interlayer distance, and we used the property Nnþ2 ¼ −Nn. In the continuum limit d → 0, the first and the
second terms in Eq. (2) produce the bulk and the surface contributions to the electric polarization, respectively,

4πP ¼ γ∇z × Eþ 1

2
γδðzÞðτx − iτyÞE; ð3Þ
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where γ ¼ ~γ ẑ ·½NðnÞ × Nðnþ1Þ�, and the Pauli matrices τx and τy act on the two-component electric field E ¼ ðEx; EyÞ. In
agreement with the discussion above, the surface term in Eq. (3) contains the antisymmetric contribution proportional to iτy
with the coefficient 1=2 relative to the bulk term, as in Eq. (6) of Ref. [10]. The surface term in Eq. (3) also contains the
symmetric contribution proportional to τx, which represents nematicity in our lattice model. Substituting Eq. (3) into
Maxwell’s equations with the electric current density given by j ¼ _P, we find that the plane-wave eigenmodes propagating
in the z direction with the frequency ω are circularly polarized E� ∝ ð1;�iÞ with the momenta k� ¼ kð1� kγ=2Þ, where
k ¼ ω=c. By matching the incoming EIeikz and reflected ERe−ikz waves with the eigenmodes E� in the bulk and using the
correct boundary condition determined by the surface term in Eq. (3), we find, indeed, that the reflection matrix is
symmetric, so the polar Kerr effect vanishes.
The same conclusion can be also obtained without taking the continuous limit. The electric polarization (2) gives the

following contribution to the right-hand side of Maxwell’s equation for the waves propagating in the z direction

∇2
zEþ k2E ¼ −4πk2d

X∞

n¼0

Pnδðz − ndÞ: ð4Þ

Treating the right-hand side of Eq. (4) as a perturbation [16] up to the first order in γ, we obtain the reflection matrix

ER ¼ iγk
4 cos kd

τxEI; ð5Þ

which contains only the symmetric matrix τx, so the polar Kerr effect vanishes.
In conclusion, we withdraw our claim made in our Letter that the chiral texture of loop currents can explain the

experimentally observed polar Kerr effect in cuprates [1]. Although our model does contain a bulk gyrotropic term and
produces a nonzero Faraday effect on transmission, the reflection matrix of light is, nevertheless, symmetric and gives zero
polar Kerr effect. The correct result is obtained when the surface term is properly derived from our discrete lattice model in
our Letter. Incorrect conclusions about a nonzero polar Kerr effect were made when the surface term was either omitted [6]
or had an incorrect factor [14]. A theoretical explanation of the experimental results [1] still remains an open question. An
alternative approach using a time-reversal-breaking tilted loop-current model was proposed in Ref. [17].
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