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We study experimentally and theoretically the hydrodynamic interaction of pairs of circular inclusions in
two-dimensional, fluid smectic membranes suspended in air. By analyzing their Brownian motion, we find
that the radial mutual mobilities of identical inclusions are independent of their size but that the angular
coupling becomes strongly size dependent when their radius exceeds a characteristic hydrodynamic length.
These observations are described well for arbitrary inclusion separations by a model that generalizes the
Levine-MacKintosh theory of point-force response functions and uses a boundary-element approach to
calculate the mobility matrix for inclusions of finite extent.
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Since many of the processes critical for the life of the
cell take place in the plasma membrane or in the mem-
branes of organelles, the physics of transport, diffusion, and
aggregation of particles in thin, fluid membranes is of
fundamental interest. Biological membranes are typically
crowded, being populated by a high density of mutually
hydrodynamically interacting proteins or protein assem-
blies. A key feature of the hydrodynamic interactions
between such particles is that they are, in general, mediated
both by the membrane and by the surrounding fluid. In this
Letter, we develop the theoretical tools for analyzing the
collective hydrodynamics of multiple inclusions in two-
dimensional (2D) fluid membranes and test this modeling
approach in high-precision experiments on inclusions in
freely suspended smectic liquid crystal films.
Saffman and Delbrück (SD) studied theoretically the

mobility of a single particle of radius a in a fluid layer of
viscosity η and thickness h embedded in a different fluid of
viscosity η0 and found that the mobility of the inclusions
depends on the Saffman length lS ¼ ηh=ð2η0Þ [1]. The
general dependence of mobility on size and the crossover
from three-dimensional (3D) to 2D behavior as the particle
size is reduced was subsequently derived by Hughes-
Pailthorpe-White (HPW) [2].
Since it is difficult to measure viscosity and to vary the

length scales a and lS systematically over a wide range in
biomembranes, the SD and HPW theories have not been
extensively tested in biological systems. In thin, fluid smectic
films, however, the relevant physical parameters are known
and can be readily varied. The Saffman length in these
systems is tens of microns, comparable to lS in biological

membranes with high viscosity [3]. Nguyen et al. [4]
previously demonstrated the crossover behavior predicted
by HPW theory by measuring the Brownian diffusion of
isolated inclusions in smectic films. The hydrodynamic
description of several inclusions in a fluid membrane is
complex because their mobilities depend not only on their
size and the drag from the surrounding fluid(s) but also on the
hydrodynamic interactions between them, so such systems
are much less well studied. Bussell et al. [5] extended SD
theory in order to predict the mobilities of two cylinders in a
membrane in the limit a ≪ lS. Levine and MacKintosh
(LM) derived the response function for a point force in a
2D fluid [6] (see also [1]), an approach to computing the
mobility matrix in the far-field limit that forms the basis of
the generalized hydrodynamic model presented below.
Microrheology experiments have been carried out pre-

viously on several model membrane systems. For example,
Cheung et al. measured the diffusion of colloidal particles
embedded in soap films and showed that their long-range
hydrodynamic interactions were 2D in nature [7]. Di
Leonardo et al. used laser tweezers to manipulate colloidal
particles in thick soap films in order to determine their
mutual 2D eigenmobilities in the limit of large Saffman
lengths [8]. In an earlier study, Prasad et al. probed
experimentally the correlated motion of colloidal particles
at the air-water interface [9]. In their analysis, they assumed
that the particles were sufficiently dilute that they could be
treated as points. One may ask under what circumstances
the far-field approximation is justified and to what extent
the Levine-MacKintosh model remains valid, for inclusions
of finite size that are close together. Our experiments on
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smectic films reveal that, in many cases, the mutual
mobilities of large circular inclusions of the same radius
are well described by the LM theory. Surprisingly, the
radial mobility, which describes the relative motion of two
inclusions toward or away from each other, is found to be
independent of inclusion size, even when the inclusions are
very near each other, an observation confirmed by our
extended hydrodynamic model.
In this Letter, we report measurements and theoretical

modeling of the mobilities of pairs of inclusions in smectic
A liquid crystal films, fluid membranes that are only a
few nanometers thick. These films are very stable [10]
and provide an ideal platform for studying hydrodynamics
in 2D fluids [11–14]. In our experiments, we observe the
Brownian motion of silicone oil droplets and smectic
“islands” embedded in the films. The islands are disk
shaped, thicker regions of the film bounded by edge
dislocations [Figs. 1(a), 1(b)] that can be created with
diameters of between a few and several hundred μm [4].

The oil droplets form lens-shaped rather than flat inclusions
[Figs. 1(c), 1(d)]. They are essentially insoluble in liquid
crystal, and their sizes remain practically constant over
long time intervals. This is particularly useful for making
mobility measurements of very small inclusions because
smectic islands less than about 10 μm in diameter tend to
shrink rapidly and vanish within a few minutes, whereas
silicone oil droplets of similar size remain practically
unchanged for half an hour or more.
The liquid crystal used in our experiments is 8CB

(40-n-octyl-40-cyanobiphenyl, Sigma-Aldrich), a room-
temperature smectic A material. The density and viscosity
of 8CB are ρ ≈ 0.96 g=cm3 [16] and η ¼ 0.052 Pa s [13],
respectively, while the viscosity of ambient air is
η0 ¼ 1.827 × 10−5 Pa s [17]. Each smectic layer has a
thickness of 3.17 nm [18]. Freely suspended films from
two to six molecular layers thick, corresponding to Saffman
lengths between 9 and 27 μm, were formed by spreading a
small amount of the liquid crystal across a 5 mm-diameter
hole in a glass cover slip and were then observed using
reflected light microscopy. Immediately after a film is
drawn, one typically observes many islands, with a range
of diameters. The film may then be gently sheared using
an air jet to break larger islands into smaller ones for study.
To create oil droplets, the LC film was put into a sealed
chamber, where it was left until it was uniform in thickness.
A double-sealed rotary pump (WelchModel 1400) was then
used to reduce the chamber pressure to 3 × 10−3 Torr. After
about an hour, a small amount of vaporized pump oil has
made its way to the film chamber, where it eventually
condenses onto the film and forms visible droplets with
diameters of between 4 and 15 μm. We then restore the
chamber to atmospheric pressure and observe the diffusion
behavior of the droplets. Isolated pairs of islands (or oil
droplets) of similar sizes and far from other inclusions and
the film boundaries were selected for study.
The films are carefully leveled to minimize any gravi-

tational drift, allowing us to record, with high spatial
resolution at a typical video frame rate of 24 fps, the
motion of inclusion pairs for several minutes before they
diffuse out of the field of view. We use Canny’s method for
edge detection [19] and Taubin’s curve fitting algorithm
[20] to measure accurately the positions and sizes of the
inclusions in each frame. The effects of any overall drift
are removed analytically from the resulting trajectories [4].
The film thickness, an integral number of smectic layers,
is determined precisely by comparing the reflectivity of the
film with black glass [21].
In order to model the effects of the long-range hydro-

dynamic interactions between the inclusions, we consider
two circular domains of radii a and b that are subjected to
external forces F1 and F2, respectively. Since we are in the
low Reynolds number regime, inertial effects are unim-
portant and the hydrodynamics can be described using the
Stokes equations [22]. The velocity of each inclusion is a

µ

µ

µ

FIG. 1 (color online). Island and silicone oil droplet pairs in thin
8CB films viewed in reflection. (a) Islands with radii a and b and
separation s subject to forces F1 and F2. (b) Schematic cross
section of a five-layer island in a two-layer film (not to scale).
(c) Silicone oil droplets in a six-layer film. (d) Cross section of a
typical silicone oil inclusion (drawn with expanded vertical
scale), measured using optical interference in monochromatic
light [15].
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linear function of the applied forces, that of the first
inclusion, for example, being given by

V1 ¼ M11F1 þM12F2; ð1Þ
where M11 is the self-mobility matrix and M12 is the
mutual mobility matrix. Since a pair of circular inclusions
has mirror symmetry about the line connecting their
centers, the only nonvanishing components of the mobility
matrices are the diagonal elementsMrr

11,M
θθ
11,M

rr
12, andM

θθ
12

[23], where rr refers to the radial motion of the inclusions
(along the line connecting their centers) and θθ refers to
tangential motion (perpendicular to this line). The mutual
mobilities can be extracted from the experimental mea-
surements by computing the cross-correlation function [24]

hΔr1ðtÞ ·Δr2ðtÞδ(r12ð0Þ− s)i ¼2kBT(Mrr
12ðsÞ þMθθ

12ðsÞ)t;
ð2Þ

whereΔrkðtÞ ¼ rkðtÞ − rkð0Þ is the displacement of the kth
inclusion in time interval t and r12ð0Þ and s are respectively
the distances between the centers of the inclusions at t ¼ 0
and at time t [see Fig. 1(a)].
The observed dependence of the mutual mobilities Mrr

12

and Mθθ
12 (scaled by 4πηh) on the dimensionless center-

to-center distance s=lS is plotted in Fig. 2 for pairs of oil
drops with approximately equal radii a ≈ b < lS.
Remarkably, in this 2D regime, where dissipation occurs
primarily in the smectic film [25], both mutual mobilities
are found to be independent of the inclusion size. In the
LM theory, ααβ gives the flow induced by a point force at
x∶vαðx0Þ ¼ ααβðx0 − xÞfβδðxÞ. Since the LM model
describes the microrheology of viscoelastic membranes
and we treat the smectic films as purely viscous 2D fluids,
we use an α corresponding to −iωα in the LM theory.
The response function ααβ may be split into parallel
(radial) and perpendicular (tangential) contributions
ααβðxÞ¼α∥ðzÞx̂αx̂βþα⊥ðzÞ½δαβ−x̂αx̂β�, where z¼ jxj=lS.
Both α∥ðzÞ and α⊥ðzÞ diverge logarithmically as z → 0, and
for large z we have α∥ðzÞ ∼ 1=z and α⊥ðzÞ ∼ 1=z2. Even
when the drop separation s is comparable to or smaller than
the Saffman length,Mrr

12 andM
θθ
12 closely follow the α∥ and

α⊥ components of the LM response function tensor ααβ

(black dashed lines in Fig. 2) [6].
Now we consider large smectic islands with a ≈ b > lS,

the 3D hydrodynamic regime in which dissipation
occurs primarily in the air surrounding the smectic film.
Surprisingly, here too the observed radial mutual mobility
Mrr

12 is described well by the LM response function α∥
for pointlike particles, even when the inclusions are very
close together [Fig. 3(a)]. The tangential mutual mobilities
Mθθ

12, however, deviate significantly from α⊥ and depend
strongly on radius [Fig. 3(b)].
These experimental observations motivated us to

extend the LM model beyond the far-field approximation

in order to be able to characterize the interactions of
circular inclusions of arbitrary radius and separation. In
our theoretical approach, we utilize a boundary element
method in which the flow field in the film generated by the
motion of an inclusion of radius a is determined by
integrating the effects of an array of point forces along
the inclusion boundary,

vαðx0Þ ¼
X

j¼1;2

Z
2π

0

dϕfβj ðϕÞααβ(x0 − xjðϕÞ): ð3Þ

Here α; β ¼ x; y, j ¼ 1; 2 labels the inclusion, fβj ðϕÞ are the
(initially unknown) strengths of the point forces, and ααβ is
the LM response function. The force densities fβj ðϕÞ are
found by demanding no-slip boundary conditions vα ¼ Vα

j
at each inclusion and numerically solving Eq. (3). In the
particular case of two inclusions of equal radius, moving
with velocities V and subject to forces of equal magnitude
F, one may determine the self- and mutual mobilities by
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FIG. 2 (color online). Measured and predictedmutual mobilities
(a) Mrr

12 (radial) and (b) Mθθ
12 (tangential) of pairs of oil droplets

with radii a ≈ b < lS in smectic membranes, as a function of
dimensionless separation s=lS. The statistical uncertainties here
and in Fig. 3 are a consequence of combining measurements on
several pairs of inclusions of the same average size. The LM
response functions α∥ and α⊥ are shown as dashed curves.
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invoking the linearity of the governing equations (Eq. (1)
and considering inclusion motions symmetric and anti-
symmetric in x and y illustrated in the Supplemental
Material [26]. The calculations will be described in full
detail elsewhere [27].
The mutual mobilities obtained in this way (solid curves

in Figs. 2 and 3) match the experimental data well for all
experimentally accessible inclusion sizes and ratios of a=lS.
The model predicts, furthermore, that the self-mobilities
Mrr

kk and Mθθ
kk also depend on the distance between the

inclusions, being reduced when another inclusion is
nearby, but this is a relatively weak effect that is difficult
to measure in our experiments. In addition, we note that
when applied to calculating the self-mobility of isolated
inclusions with radii in the range 0.1lS < a < 10lS, our
model reproduces the HPW predictions [2] very well,
confirming that accurate results can be obtained by assum-
ing that the inclusions are rigid [4], ignoring their interiors
and modeling the total force on each inclusion as the
superposition of the forces along its circumference.
The observation that the mutual radial mobility of two

identical circular inclusions is size independent, even at

small separations, may be understood by considering the
2D velocity field around a single inclusion moving in a
membrane, computed as described above for both small
and large values of a=lS and shown in Fig. 4. For all values
of a=lS, the flow fore and aft of the inclusion falls off more
slowly with radial distance than the flow in the regions
beside the inclusion [6], the precise form of the fall off
depending on the value of a=lS (Supplemental Material
[26]). The velocity gradients across the flow field in the fore
and aft regions are relatively small in all cases, implying
that a finite-sized second inclusion experiences the same
mean flow as a pointlike inclusion when the two inclusions
move towards or away from each other [Figs. 2(a)
and 3(a)]. Furthermore, a multipole expansion of the
computed velocity field (Supplemental Material [26])
shows that the contributions of the higher-order multipoles
to the radial mutual mobility become small when the point
forces are distributed uniformly and in a mirror-symmetric
way along the circumference of the (circular) inclusion,
explaining why the LM response functions describe the
radial mutual mobility accurately.
A similar argument holds for the tangential relative

motion when the Saffman length is large [Figs. 2(b)
and 4(a)], but in the case of small Saffman lengths
[Figs. 3(b) and 4(b)], there are significant velocity gradients
in the regions directly to either side of the inclusion that
result in a strong size dependence of the mutual mobility. In
this case, the higher-order multipole contributions to the
tangential mobility can not be neglected, even for a
symmetric distribution of point forces.
Finally, when the inclusions have different diameters, the

radial mutual mobility is found experimentally to be size
dependent at all Saffman lengths. The model confirms this
result and predicts similar deviations from the point-source
approximation when the inclusions are not circular, for
example, when they are elliptical.
In summary, we have probed the hydrodynamic inter-

actions of a pair of inclusions in a thin fluid membrane. A
theory generalizing the point particle approach of Levine
and MacKintosh in order to consider inclusions of finite
extent and arbitrary separation reproduces the experimental

FIG. 4. Model flow fields near moving circular inclusions of
radius (a) a=lS ¼ 0.1 and (b) a=lS ¼ 10 in a 2D membrane.
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FIG. 3 (color online). Measured and predicted mutual mobil-
ities (a) Mrr

12 (radial) and (b) Mθθ
12 (tangential) of pairs of islands

with radii a ≈ b > lS in smectic membranes, as a function of
dimensionless separation s=lS. The LM response functions α∥
and α⊥ are shown as dashed curves.
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mobilities obtained by measuring the Brownian motion of
oil droplets and islands in thin smectic A liquid crystal
films. The model confirms the surprising experimental
observation that for identical circular inclusions, the mutual
radial mobilities are independent of size for all Saffman
lengths, while the mutual tangential mobilities depend
strongly on both size and separation only when the
inclusions are larger than the Saffman length.
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