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We study an abstract model for the coevolution between mutating viruses and the adaptive immune
system. In sequence space, these two populations are localized around transiently dominant strains.
Delocalization or error thresholds exhibit a novel interdependence because immune response is conditional
on the viral attack. An evolutionary chase is induced by stochastic fluctuations and can occur via periodic or
intermittent cycles. Using simulations and stochastic analysis, we show how the transition between these
two dynamic regimes depends on mutation rate, immune response, and population size.
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Evolution is commonly pictured as a dynamic process
on a fitness landscape in sequence space. In general, this
landscape depends not only on the genotype but varies
dynamically as a function of the environment and coevolv-
ing interaction partners [1]. Prominent biological examples
are the coevolutionary dynamics between the adaptive
immune system and virus populations such as HIV [2,3]
or influenza [4], or between bacteria and their phages [5].
Continuous evolutionary innovations allow the virus to
transiently escape immune suppression, triggering sub-
sequent adaptations of the immune system. These dynam-
ics can lead to coevolutionary cycles, which have been
generally described in two different forms [4,6]: either as an
intermittent series of quasistationary states connected by
stochastic jumps, or as periodic and largely deterministic
oscillations. From a modeling perspective, this highly
complex process is determined by three main features
[7]. First, mutation rates are high and populations are large,
which implies large genetic heterogeneity within the
populations [8]. This has often been pictured in terms of
broad quasispecies distributions around peaks in the fitness
landscape [9,10]. At the same time, continuous adaption
and coevolutionary arms races are driven by strong eco-
logical interactions [6,11]. These modulate effective fitness
landscapes [2,12,13] and lead to nontrivial nonlinear
population dynamics. Finally, stochastic effects in finite
populations become especially pronounced whenever the
first two issues are relevant at the same time [11,14–16].
Here, we offer a synthetic perspective on these processes.

In our model [see Fig. 1(a)], we consider a population of N
viruses represented by their genotypes (binary sequences
of length L and frequency xi) and replication rates ri ¼ 1.
A small number n of these genotypes corresponding to
particularly virulent strains have a fitness advantage α
over the unit baseline, giving ri ¼ 1þ α for i ¼ p; q;….
Offspring sequences undergo mutations with per-base rate
μx. In the absence of immune suppression, and in the
stationary state, the viral population localizes as so-called

quasispecies around any of the fittest genotypes, provided
the mutation rate is smaller than Eigen’s error threshold
μc ≈ lnðαþ 1Þ=L [10]. This simple picture is considerably
complicated by the host’s adaptive immune system, which
produces antibodies that recognize and neutralize viruses
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FIG. 1 (color online). (a) Schematic model for the coevolu-
tionary dynamics of virus (V) and immune system (IS). The two
populations are subject to mutation and selection (left), but also to
ecological interactions (right). (b) Exemplary trajectories of the
relative frequencies of virulent strains xi (top) and corresponding
antibodies yi (bottom). Regular oscillatory dynamics involving
three strains turn into simpler two-strain oscillations at T3→2 and
finally transition into intermittency at T int. Genetic variability
within the populations is calculated from the average pairwise
Hamming distance and is indicated in gray dashed lines.
(c) Sketch of the dynamics of the full population distributions
in sequence space as described in the text.
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with matching epitopes [17]. Antibody production is
specifically increased and variability in the binding affinity
is introduced when viruses with matching genotype are
encountered [18], in a process that can be modeled in
terms of mutation and selection. Similar concepts can be
used for bacterial immune systems, where spacer sequences
in the host genome complementary to genetic elements of
a phage take antibodylike functions [5]. Hence, for the
immune system we introduce a second population of N
binary sequences with frequencies yi, mutation rate μy,
unit replication rate for unstimulated production, and
stimulated antibody production in the presence of perfectly
matching viruses [9,19]. Ecological interactions then intro-
duce frequency-dependent fitness terms ∝ xiyi for such
matched virus and antibody pairs. Including these terms
leads to a reduction of the viral load and stimulation of
antibody production [Fig. 1(a), right]. In the deterministic
limit (N → ∞), our model is described by (see the
Supplemental Material [20])

_xi ¼
X
j

mx
ijrjxj − αxiyi − xiϕx;

_yi ¼
X
j

my
ijð1þ γxjÞyj − yiϕy; ð1Þ

where i and j run over all 2L sequences. The fitness
advantage α of virulent strains can be suppressed to
background levels by a perfectly adapted immune system,
which undergoes stimulated production at rate γ when

encountering matching viral epitopes. Further, mx
ij ¼

μ
dij
x ð1 − μxÞL−dij is the probability of having dij simulta-

neous mutations, where dij is the Hamming distance
between xi and xj. The dilution terms ϕx=y are obtained
from the conditions

P
i _xi ¼ 0 and

P
i _yi ¼ 0, respectively,

and keep the sizes of the two populations fluctuating
around constant values. This constraint applies to the
stationary phase of the adaptive race, while we ignore
some of the effects of a changing viral load [2,3,9,28] and
also neglect immune system memory [29] and unspecific
recognition [17].
To facilitate a systematic study of the effects of dem-

ographic noise by means of simulations and theoretical
analysis, our starting point is the underlying stochastic
master equation (see the Supplemental Material [20]),
which has rarely been used in this context. Its deterministic
limit leads to Eq. (1) and connects to established quasis-
pecies theory [10,19]. Exemplary simulation results
obtained with the Gillespie algorithm [30] are shown in
Fig. 1(b), with parameters in the coexistence regime
discussed below. We readily identify characteristics of
the intermittent coevolutionary dynamics. First, a particu-
larly virulent strain with its associated quasispecies “cloud”
of mutants triggers a specific immune response (a), leading
to a corresponding localization in the antibody sequence

space (b). This gives alternative viral strains that are not
under immune attack a fitness advantage, and after a brief
“search” period during which the viral population becomes
delocalized, this new fitness peak is colonized in a
“growth” phase (c), awaiting the adaptive immune response
(d). The delocalization and relocalization dynamics of
each population in sequence space are clearly visible as
transient increases in their respective mean pairwise
Hamming distances [Fig. 1(b)]. Intriguingly, this sequence
of events can occur both in the form of regular oscillations
as well as by means of stochastically intermittent cycles [6].
The former occurs when the large genetic diversity within
the population extends across the valleys between different
fitness peaks and signifies periodic shifts in the extent to
which these peaks are populated [12]. The latter case
indicates that adaptation proceeds stochastically via the
random discovery of previously unpopulated fitness peaks
by relatively tightly localized populations.
Steady-state regimes: Coexistence for mutation rates

below interdependent error thresholds.—We use a reduced
deterministic version of the model to determine stationary
states and the associated error thresholds. We restrict the
analysis to the populations of the n virulent strains xp;q;���
and their respective antibodies yp;q;���, and lump all mutant
sequences together in the so-called error tail [31]. The high-
dimensional system (1) is then reduced to [20]

_xp ¼ ½Qxð1þ αÞ − αyp − ϕ̄x�xp;
_yp ¼ ½Qyð1þ γxpÞ − ϕ̄y�yp; ð2Þ

where p runs over the n strains, which are coupled by the
corresponding dilution terms ϕ̄x=y. Qx=y ¼ ð1 − μx=yÞL are
the quality factors. A straightforward stability analysis of
fixed points in this system with respect to μx=y as bifurca-
tion parameters yields the phase diagrams of Fig. 2.
As expected, we recover the classical result that the

viral population localizes around a fitness peak only if
Qx > Qc ≡ ðαþ 1Þ−1, with increasing genetic variability
(i.e., the width of the population distribution) for larger
mutation rate μx. However, antibodies are localized only
(1) if their mutation rate μy is small enough, (2) if their
production rate γ is high enough, and (3) if the virus attack
is specific enough (i.e., tightly localized). These inter-
dependent requirements are an inevitable consequence of
ecological interactions, and they translate into the condition
Qy ¼ fðγ=αnÞ½Qxðαþ 1Þ − 1� þ 1g−1 as the analytical
limit for the coexistence regime (blue dashed lines in
Fig. 2). Only in this regime do we find the intriguing
oscillatory dynamics shown in Fig. 1 that will be discussed
below. Finally, in a somewhat model-specific “degenerate”
regime bounded by Qy ¼ fðγ=αÞ½Qxðαþ 1Þ − 1� þ 1g−1,
the virus population can stably localize about several fitness
peaks simultaneously such that none of these quasispecies
is sufficiently tight to trigger a specific response of the
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immune system, which thus remains delocalized. The fixed
points of the approximate system (2) coincide closely with
the mean steady-state concentrations obtained by stochastic
simulation of the full system (1) [see Figs. 2(c) and 2(d)].
Interestingly, for α ¼ γ and symmetric mutation rates
μx;y ≡ μ, the critical condition of coexistence can be
approximated by μ ≈ ð1=2LÞ ln ðα=2Þ for large α and L,
which generalizes a comparable result for mutualistic
frequency-dependent fitness [32] to the case of antagonistic
interactions. This correspondence also suggests that the
error thresholds derived here should be largely unchanged
if recognition between the two population tolerates some
mismatches [33].
Noise-driven oscillations in the coexistence regime.—

Performing a linear stability analysis in the coexistence
regime reveals that the oscillations seen in the simulations
are caused by n − 1 pairs of purely imaginary eigenvalues.
Numerical solutions of the deterministic Eqs. (2) show
complex but regular oscillations involving all n strains with
slow amplitude variations controlled by higher-order non-
linearities (see Fig. S1 in the Supplemental Material [20]).
Results from stochastic simulations, however, suggest that
such complex patterns quickly give rise to simpler oscil-
lations involving only two strains, which at a later time
transition into intermittency (cf. Fig. 1). Investigating the
case n > 2 by simulations below, we restrict further

analysis to n ¼ 2. Also, here we only display more compact
analytical results for the case γ ¼ α (see the Supplemental
Material [20] for general results). Our analysis exploits that
in the coexistence regime mutation rates μx=y ≲ ln α=L are
small compared to the error thresholds and can be used as
expansion parameters. To obtain the nonlinearities that
control oscillation amplitudes, we expand Eq. (2) to first
order and transform to polar normal form on the two-
dimensional stable manifold [20],

_u ¼ −
4

5
L½μxðαþ 1Þ þ μy�u2; ð3aÞ

_φ ¼ α

2
−
L
2
ðαþ 1Þðμx þ μyÞ þOðuÞ; ð3bÞ

where u is a squared radial coordinate indicating deviations
from the coexistence fixed point and φ measures the phase
of the oscillations. Equation (3a) exhibits a weak geometric
decay of the oscillation amplitude Oðu2μxÞ ≪ 1, which
makes the fixed point only marginally stable and thus
vulnerable to stochastic fluctuations [34–36]. Notably, the
oscillation frequency of Eq. (3b) depends mainly on the
fitness advantage α, and is only weakly slowed down by
mutations. In this deterministic regime, the quasispecies
distribution in sequence space is broad enough that the time
required to shift to a new fitness peak is dominated by the
growth of the subpopulation already on the new peak (with a
rate α) rather than the search for this new peak in the first
place (via mutations). We note that this effect is even
stronger if the two fitness peaks are close in sequence space,
i.e., if direct mutations between them are not ignored as in
Eq. (2). In contrast, when the coexistence regime displays
intermittent dynamics, because the relevant sequence space
is not already inhabited by the virus population, the
dynamics are inherently stochastic and mutation rates can
be too small for the virus to explore enough sequence space
to escape immune suppression in time. This would corre-
spond to an adaptation threshold as found in a previous study
[19]. However, as shown more formally below, this situation
is incompatible with the presence of deterministic dynamics,
which is an assumption of standard quasispecies theory.
Instead, population genetics models should be used [11,13].
Noise determines if dynamics are periodic or intermit-

tent.—We can characterize how stochastic noise controls
the transition between periodic and intermittent
adaptive dynamics by means of stochastic averaging.
This technique enables a systematic derivation of effective
one-dimensional Fokker-Planck equations in relevant sub-
spaces of more complex high-dimensional nonlinear
dynamics such as those arising in evolutionary game theory
[37]. It is based on the time scale separation between slow
radial and fast azimuthal dynamics in Eq. (3): φ evolves on
fast time scales ( _φ ∝ α), while u changes much more
slowly ( _u ∝ μLu2). Using this observation, we can derive
effective coefficients governing the evolution of the
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FIG. 2 (color online). (a) Regimes of coevolution. High
mutation rates μx of the virus lead to population delocalization,
while for lower mutation rates a regime of coexistence emerges.
Intermediate values lead to a degenerate localization regime for
the virus (see text). (c) Steady-state values for relative frequencies
xp ¼ xq and yp ¼ yq as a function of μy with μx ¼ μy (above) or
μx ¼ 0.05 (below). Solid lines are solutions of Eq. (2) and dots
are simulation results. Panels (a) and (c) are for γ ¼ α, while (b)
and (d) show analogous result for γ ¼ 10α, where L ¼ 8, n ¼ 2,
and α ¼ 10.
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probability distribution Pðu; tÞ of the radial variable by
averaging the angular dynamics over one oscillation period
[20]. To leading order, we get

∂tP ¼ −∂u

��
−a1u2 þ

a2
N

�
P

�
þ 1

N
∂2
uða2uPÞ; ð4Þ

with a1 ¼ 4
5
L½μxðαþ 1Þ þ μy� and a2 ¼ 1

16
f4þ 3α−

μxL½ð4=αÞ þ 11þ 7α� − μyL½ð4=αÞ þ 7þ 3α�g. Note that
in the deterministic limit N → ∞we recover Eq. (3a). For a
finite population, we now find the deterministic decay
∝ a1u2 towards the coexistence fixed point in competition
with a stochastic outward drift ∝ ða2=NÞ, which destabil-
izes the fixed point and leads to a finite oscillation
amplitude hui ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=πÞða2=a1NÞp

. As mutation rates
get small, expected oscillation amplitudes grow as
½ðαþ 1Þμx þ 4μy�−1=2, eventually hitting the borders of
the concentration simplex. This indicates the transition
from regular oscillations to intermittent behavior: during
large-amplitude oscillations the fittest virus genotypes are
temporarily lost from the population and are only much
later recovered through spontaneous mutations.
A more detailed understanding of this transition is

obtained by estimating the lifetime of the regular oscil-
lations. To this end, we use the bounds on the radial
variable umax ¼ 1

8
−OðμLÞ, where the populations are fully

localized about only one peak. The chances of observing a
transition to intermittent behavior are estimated from the
mean first passage time (MFPT) T int from u ¼ 0 to u ¼
umax under Eq. (4). Using standard methods [38], we find
the result [20]

T int ¼ N
umax

a2
~F

�
Na1u2max

2a2

�
; ð5Þ

where ~FðxÞ is the generalized hypergeometric function

2F2ð1=2; 1; 3=2; 3=2; xÞ. Equation (5) can be brought into
scaling form by defining N� ¼ ð2a2=a1u2maxÞ and T� ¼
N�ðumax=a2Þ. To compare this result to simulations, we
plot the rescaled MFPT ðT int=T�Þ ¼ ðN=N�Þ ~FðN=N�Þ (see
Fig. 3). The nearly perfect data collapse for different
parameter choices validates our analytical approach.
While N� measures the population size at the crossover

from periodic to intermittent dynamics, T� denotes the
corresponding typical duration of the transition. For large
populations (N > N�), we find T int ∼ N−1=2eN=N�

; this
almost exponential growth of the MFPT indicates that
the dynamics are effectively deterministic and intermittent
behavior extremely unlikely. For N < N�, we find T int ∼ N
and the dynamics thus easily transition into intermittency.
This distinction based on the scaling of T int with N has
recently been suggested in the context of game theory [35].
In our case, however, finite mutation rates prevent perma-
nent extinction of subpopulations and stabilize regular

oscillatory behavior even in small populations, because
the deterministic decay in Eq. (3a) is strengthened and the
critical population size N� ∝ ðμxLÞ−1 is reduced. Thus,
even for small populations, mutations can act as a driving
force for the stabilization of regular oscillations, which
a posteriori justifies assumptions underlying quasispecies
theory and generalizes previous observations [14]. In
contrast, from results for general γ (see Fig. S2 in the
Supplemental Material [20]), we find that a strong immune
response (i.e., γ > α) promotes early transitions into
intermittency [cf. Fig. 3(b)], since both N� and T� increase
with γ. However, these parameters are insensitive against
the precise value of μy [cf. Fig. 3(a)]; this suggests that
effective immune suppression is achieved via a strong
stimulated response rather than high adaptive flexibility.
Indeed, extreme antibody secretion rates have been
reported in the literature [39]. Finally, we support our
choice of limiting the analysis to n ¼ 2 strains by simulat-
ing a system with n ¼ 3 strains, measuring the time T3→2

until one strain is lost as well as the subsequent T int until the
remaining two strains transition to intermittency. As shown
in Fig. 3(c), the state with all three strains present is short
lived compared to the two-strain oscillations, especially
in the relevant deterministic regime of larger population
size. Hence, apart from numerical prefactors the general

(a)

(b) (c)

FIG. 3 (color online). Mean time until transition from regular
oscillations to intermittency. Dashed lines are from the analytical
result (5). (a) Rescaled simulation data for L ¼ 8, α ¼ γ ¼ 10,
and different choices of μx=y collapse onto a universal curve
(unscaled data shown in the inset). (b) Transition times decrease
for increasing γ [parameters otherwise as in (a)]. (c) For n ¼ 3
virulent strains, the transition time T3→2 until one strain is lost is
much shorter than T int, especially for large populations.
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trend captured in Eq. (5) also describes systems with
larger n.
Conclusions.—We have analyzed a model for the coevo-

lutionary dynamics of virus and immune system, combin-
ing simulations with nonlinear deterministic and stochastic
analysis. Starting from the established quasispecies treat-
ment of this problem, we explicitly introduced interactions
between the populations. These lead to interdependent error
thresholds, because a focused immune defense against a
specific viral strain is impaired for large genetic variability
in the virus population. Further, we performed a rigorous
analysis of stochastic effects in the coexistence regime:
regular yet noise-induced oscillatory behavior for large
populations, large mutation rates, and weak immune
response turn into stochastic intermittent cycles for smaller
populations, smaller mutation rates, and strong immune
response. Our simulations indicate that the reverse tran-
sition from intermittency towards regular oscillations is a
rare event occurring on time scales well beyond T int.
It cannot easily be analyzed within our reduced two-
dimensional model as it will depend on the entire pop-
ulation structure. Finally, we note that our abstract model
based on quasispecies theory focuses on the dynamics of
genetic variability within populations of constant size. This
assumption is of course violated for some biological
scenarios, where immune response modulates the viral
load [2,9,28] and may well lead to extinction of the virus
[3,40]. We expect that more detailed models including
these and other effects relevant in biological situations
[17,29] will also be amenable to theoretical analysis based
on the stochastic averaging techniques used here.
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