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Building on advanced results on permutations, we show that it is possible to construct, for each
irreducible representation of SUðNÞ, an orthonormal basis labeled by the set of standard Young tableaux
in which the matrix of the Heisenberg SUðNÞ model (the quantum permutation of N-color objects) takes
an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of
the singlet space on n sites increases very fast with N, this formulation allows us to extend exact
diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method,
we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for
SU(8), and evidence in favor of a quantum liquid for SU(10).
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There is currently considerable experimental activity on
ultracold multicomponent fermions [1–3]. When loaded
in an optical lattice, these systems are expected to be, for
integer number of particles per site and sufficiently large
on-site repulsion, in a Mott insulating phase described by
the SUðNÞ Heisenberg model [4–7]. This effective model
is a generalization of the familiar SU(2) model, and in the
case of one particle per site, it takes the general form of a
quantum permutation Hamiltonian:

H ¼
X
ði;jÞ

Jij
X

μ;γ¼A;B;C;…

jμiγjihγiμjj ¼
X
ði;jÞ

JijPij; ð1Þ

where the sum
P

ði;jÞ runs over all pairs of interacting sites
(Jij being the coupling constant). The permutation operator
Pij simply switches the states between sites i and j, and the
local Hilbert space is of dimension N.
In the context of condensedmatter physics, twocases have

been mainly studied: SU(3), which describes spins 1 with a
biquadratic interaction equal to the bilinear one [8–10], and
SU(4), the symmetric version of the Kugel-Khomskii spin-
orbital model [11–14]. Apart from one dimension, where
there is a Bethe ansatz solution [15] and minus sign free
quantum Monte Carlo simulations [16,17], reliable infor-
mation could only be obtained by combining approximate
analytical and numerical approaches such as flavor-wave
theory [8,18], exact diagonalizations (EDs) of finite clusters
[9,19–21], variational Monte Carlo [20–22], or tensor
network algorithms [19,20,23].
With cold atoms, one can implement larger values of N,

up to 10, allowing one to realize new types of quantum
phases [7]. In particular, it has been predicted by mean-field
theory that chiral phasesmight be stabilized for large enough
N [24–26]. However, for large N, most of the methods
employed encounter specific difficulties: flavor-wave
theory is limited to phases with long-range color order, the
performance of tensor-network algorithms significantly

decreases when the dimension of the local Hilbert space
increases, and EDs are severely limited by the size of the
available clusters. Alternatives are clearly called for.
In this Letter, we introduce a simple method to perform

EDs of any quantum permutation Hamiltonian separately in
each irreducible representation (irrep) of SUðNÞ. Since the
dimension of the irreps relevant at low energy (for instance
the singlet, to which the ground state belongs) is much
smaller than that of the sector used in traditional ED, this
approach allows one to perform ED on essentially the same
cluster sizes for large N as for small N. The power of the
method is illustrated by the first and only ED investigation
so far of SU(5), SU(8), and SU(10) on the square lattice.
Let us first recall some standard results about the irreps

of SUðNÞ. For a lattice of n sites, each irrep can be
associated to a Young tableau with n boxes and at most N
rows (see Fig. 1). The shape of a Young tableau can be
described by an array α ¼ ½α1; α2;…;αk� (1 ≤ k ≤ N)
where the lengths of the rows αj satisfy α1 ≥ α2 ≥ …
≥ αk ≥ 1. In the full Hilbert space □

⊗n, where □ is the
fundamental irrep or equivalently the Hilbert space for one
site, the multiplicity fα of an irrep, i.e., the number of times
it appears, is given by fα ¼ n!=ðQn

i¼1 liÞ, where the hook
length li of a box is defined as the number of boxes on
the same row at the right plus the number of boxes in the
same column below plus the box itself (see Fig. 1). The
multiplicity is equal to the number of standard Young
tableaux, i.e., Young tableaux filled up with numbers from
1 to n in ascending order from left to right in any row, and
from top to bottom in any column. The standard Young
tableaux can be ranked from 1 to fα through the last letter
sequence: two standard tableaux Sr and Ss are such that Sr <
Ss if the number n appears in Sr in a row below the one in
which it appears in Ss. If those rows are the same, one looks
at the rows of n − 1, etc. (see Fig. 1). The dimension dαN of
an irrep can also be calculated very simply from the shape α
asdαN ¼ Q

n
i¼1ðdi;N=liÞ, wheredi;N ¼ N þ γi, where γi is the
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algebraic distance from the ith box to the main diagonal,
counted positively (resp. negatively) for a box above (below)
the diagonal (see Fig. 1). The full Hilbert space can be
decomposed as □

⊗n ¼ ⊕αVα, where Vα is the Hilbert
space associated to irrep α, and, if dαN > 1, Vα can itself
be decomposed into dαN equivalent subsectors Vα

i as
Vα ¼ ⊕iVα

i , with dimðVα
i Þ ¼ fα, dimðVαÞ ¼ fαdαN and

dimð□⊗nÞ ¼ Nn ¼ P
αf

αdαN [27].
For our purpose, the key property is that, since it has

SUðNÞ symmetry, the quantum permutation HamiltonianH
can be diagonalized independently in each subsector Vα

i ,
whose size (in particular that of the singlet) becomes much
smaller than that of the Hilbert space used in standard ED
when N increases (see examples in the table of Fig. 2 and
Supplemental Material [28]). To diagonalizeH directly in a
subsector Vα

i , one should construct an orthonormal basis of
this sector, and write the matrix of H in this basis. In
principle, one can construct a basis recursively using SUðNÞ
Clebsch-Gordan coefficients [30]. However, since the
multiplicity of an irrep is equal to the number of standard
Young tableaux, a natural alternative is to try and associate
directly a basis state to each standard Young tableau. This
can be achieved by using the Young symmetrization
operator, the product of antisymmetrizers on the columns
followed by symmetrizers on the rows [31]. Indeed, one can
get a set of fα linearly independent states that all belong
to irrep α by applying the Young symmetrization operator
associated with a standard tableau Sr, in which the sites
involved in the symmetrizers and antisymmetrizers are
chosen according to the numbering of Sr, to the product
state: jΦα

r i ¼ jσ1i ⊗ … ⊗ jσni, with jσii ¼ A if i belongs
to the first line of Sr, B if it belongs to its second line, etc.
[28]. However, this construction does not lead to a simple
method to perform ED of the SUðNÞ Heisenberg model for
two reasons. First, these states are not orthogonal. Besides,
the Hamiltonian does not take a simple form.
In his substitutional analysis, Young also realized that the

Young symmetrization operators (called natural units in his
original work [32]) were not convenient to solve algebraic

problems [33]. So, he further developed the theory of the
permutation group to come up with more powerful oper-
ators than the simple products of symmetrizers and anti-
symmetrizers. More specifically, he constructed linear
superpositions of permutations of the symmetric group
Sn that he called orthogonal units which, when interpreted
as operators in the Hilbert space of the SUðNÞ Heisenberg
model, will enable us to construct an orthonormal basis in
which the quantum permutation Hamiltonian takes a very
simple form. For a fixed shape α, there are ðfαÞ2 orthogonal
units foαrsgr;s¼1.:fα , where the indices r and s refer to two
standard tableaux of shape α. They can be constructed
recursively as nested products of symmetrizers and anti-
symmetrizers associated to standard tableaux of smaller
size [28,34]. The resulting expressions are rather compli-
cated. For instance, for the shape ½2; 1� (n ¼ 3), for which
there are two standard tableaux, the first orthogonal unit

reads o½2;1�11 ¼ ð1=12Þðϵþ τ1;2Þ2ðϵ − τ1;3Þðϵþ τ1;2Þ where

FIG. 1. (a) Example of a Young tableau: α ¼ ½3; 2; 2�;
(b) Integers di;N that enter the numerator of the dimension
of α; (c) Hook lengths li; (d) Examples of standard tableaux
ranked according to the last letter sequence. (e) Normal product

state jΦ½3;2;2�
1 i ¼ jAAABBCCi.

FIG. 2 (color online). Real-space correlations hP0ji − 1=N for
various SUðNÞmodels and cluster sizes on the square lattice with
periodic boundary conditions: SU(5) (tilted 25 and 20 site cluster),
SU(8) (16 sites), and SU(10) (20 sites). The black dot is the
reference site 0. Positive (negative) correlations are depicted as
blue (red) disks with an area proportional to the absolute value of
the correlation. The correlations for SU(5) on the (5 × 5) 25-site
cluster are shown and discussed in the SupplementalMaterial [28].
Table: dimension f½n=N;…;n=N� of the singlet subspace in which the
permutation Hamiltonian has been diagonalized, approximate
dimension ðn − 1Þ!=ðn=NÞ!N of the Hilbert space used in standard
ED [29], ground states energies per site EGS.
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τi;j denotes the transposition i↔j and ϵ is the identity for
Sn. In practice however, we will never need the explicit
expressions of the orthogonal units, but only some of their
properties derived by Young that we now summarize.
(i) They satisfy orthonormal relations: ∀α; β

oαrso
β
uv ¼ δαβδsuoαrv ∀ r; s ¼ 1…fα; ∀ u; v ¼ 1…fβ:

ð2Þ
(ii) The projector onto the irrep α can be decomposed

as Tα ¼ P
r¼1…fαo

α
rr.

(iii) They provide a basis in which every linear super-
position of permutations of Sn can be uniquely decom-
posed, a simple consequence of Eq. (2) and of the identityP

αf
2
α ¼ n! [32]. In particular, the Hamiltonian of Eq. (1)

can be written as H ¼ P
β;t;qμ

β
tqðHÞoβtq, where μβtqðHÞ are

real coefficients.
(iv) The decomposition of successive transpositions,

i.e., transpositions between consecutive numbers τk;kþ1

(1 ≤ k ≤ n − 1), takes a very simple form. In fact, if we
write τk;kþ1 ¼

P
β;t;qμ

β
tqðτk;kþ1Þoβtq, then, for a given shape

α, the matrices ¯̄μαðτk;kþ1Þ defined by ½ ¯̄μαðτk;kþ1Þ�tu ¼
μαtuðτk;kþ1Þ are orthogonal and very sparse, with at most
two nonvanishing entries per column or per line that can
be calculated easily. More precisely, if kþ 1 and k are in
the same row (resp. column) in St, then μαttðτk;kþ1Þ ¼ þ1
(resp. −1), and all other matrix elements involving t vanish.
If kþ 1 and k are not in the same column or the same line,
and if Su is the tableau obtained from St by interchanging k
and kþ 1, then the only nonvanishing matrix elements
involving t or u are given by�

μαttðτk;kþ1Þ μαtuðτk;kþ1Þ
μαutðτk;kþ1Þ μαuuðτk;kþ1Þ

�
¼

�
−ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
ρ

�
;

where ρ is the inverse of the axial distance from k to kþ 1
in St defined by counting þ1 (resp. −1) for each step made
downwards or to the left (resp. upwards or to the right) to
reach kþ 1 from k. For instance, τ3;4 has nonvanishing
matrix elements between the two tableaux of Fig. 1(d),
with diagonal matrix elements equal to −1=3 (left tableau)
and 1=3 (right tableau), and off-diagonal matrix elements
equal to 2

ffiffiffi
2

p
=3.

(v) The matrix ¯̄μβðσÞ that enters the decomposition of
any permutation σ ¼ P

β;t;qμ
β
tqðσÞoβtq is also orthogonal.

Indeed, a permutation can be decomposed as a product of
transpositions, and any transposition τi;j can be decom-
posed as a product of successive transpositions according
to (assuming i < j)

τi;j ¼ τi;iþ1τiþ1;iþ2…τj−1;jτj−2;j−1…τiþ1;iþ2τi;iþ1;

so that the matrix ¯̄μβðσÞ is a product of orthogonal matrices.
To prove the central results of this Letter, we need an

additional property not derived by Young:

Lemma: When interpreted as operators acting in the
Hilbert space, the orthogonal units satisfy

ðoβrsÞ† ¼ oβsr: ð3Þ

Proof:—The decomposition of the permutations can
be inverted as oβrs ¼ ðfβ=n!ÞPσ∈Sn

μβsrðσ−1Þσ [32,33].
Now, ¯̄μβðσ−1Þ ¼ ½ ¯̄μβðσÞ�−1, and since ¯̄μβðσÞ is orthogonal,
½ ¯̄μβðσÞ�−1sr ¼ ½ ¯̄μβðσÞ�rs, so that μβsrðσ−1Þ ¼ μβrsðσÞ. Then,
since the adjoint operator of any permutation σ is
σ† ¼ σ−1, we can write

ðoβrsÞ† ¼ fβ

n!

X
σ∈Sn

μβsrðσ−1Þσ† ¼ fβ

n!

X
σ∈Sn

μβrsðσÞσ−1 ¼ oβsr:

We are now in a position to state and demonstrate the two
central results of this Letter.
Proposition 1: Let jΦα

1i be the product state associated
to the first standard tableau S1 [see Fig. 1(e)]. Then, the set

fjΨα
ri ¼ jjoα11jΦα

1ijj−1oαr1jΦα
1igr¼1…fα

is an orthonomal basis of one of the subsectors of Vα.
Proof:—hΨα

l jΨα
r i ¼ jjoα11jΦα

1ijj−2hΦα
1jðoαl1Þ†oαr1jΦα

1i ¼
jjoα11jΦα

1ijj−2hΦα
1joα1loαr1jΦα

1i ¼ δlr, where we have used
that oα11jΦα

1i ≠ 0 [28]. Besides, the states transform
according to the irrep α since oαr1jΦα

1i ¼ oαrroαr1jΦα
1i ¼

Tαoαr1jΦα
1i ∈ Vα. Finally, from Eq. (2), the set is obviously

invariant under any permutation. So it must generate a
subsector of Vα.
Proposition 2: The matrix elements of H in this basis

are

hΨα
r jHjΨα

s i ¼ μαrsðHÞ: ð4Þ

Proof:—This is a simple consequence of Eq. (2).
These coefficients are simply related to those of trans-

positions by μβrsðHÞ ¼ P
ði;jÞJijμ

β
rsðτi;jÞ, which are them-

selves products of the sparse matrices of successive
transpositions whose explicit form has been given in point
(iv) above. So, we have succeeded in constructing an
orthonormal basis of one subsector of any irrep, and we
have come up with a very simple scheme to construct the
matrix of the Hamiltonian in this basis. Let us emphasize
that the explicit calculation of the basis is not required to
calculate the matrix elements of the Hamiltonian or of any
operator that can be written as a permutation.
We have used this theory to numerically investigate the

antiferromagnetic Heisenberg SUðNÞ Hamiltonian on the
square lattice [Eq. (1) with Jij ¼ J for pairs of nearest
neighbors and 0 otherwise] for N ¼ 5 (20 and 25 sites),
N ¼ 8 (16 sites), and N ¼ 10 (20 sites). In each case, we
have calculated the real-space correlations hP0ji − 1=N, the
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low energy spectrum, and the dimer-dimer correlations
hPijPrefi − hPrefi2. Some basic information (size of Hilbert
space, ground state energy) is summarized in the table
of Fig. 2.
As can be seen in Fig. 2, short-range color order is

clearly present in all cases, with positive correlations which
point to an N-site periodicity. To check whether these
correlations are actually long ranged, the best way with ED
is to look at the low-energy spectrum, which is expected to
build an Anderson tower of states [35–37] if the SUðNÞ
symmetry is broken in the ground state [9]. As can be seen
from Fig. 3, this is clearly the case for SU(5). We have
actually been able to calculate the full low-energy spectrum
for N ¼ 5 on 20 sites, whose structure illustrates several
general features of SUðNÞ models [28]. The ordering
pattern suggested by real-space correlations is consistent
with linear flavor-wave theory which predicts that, up to a
mirror reflection (and of course to color permutation), there
is a single pattern (shown as an inset of the SU(5) tower of
states in Fig. 3) able to minimize the zero point energy on
each bond [28].
For SU(8), the spectrum has a very different structure:

there is a threefold degenerate singlet far below the first
nonsinglet excited states, as in the case of SU(4), and with
the same quantum numbers [14,19]. This is typical of a
translational symmetry breaking, and the quantum num-
bers [two states of zero momentum, one state of momen-
tum ðπ; 0Þ and one state of momentum ð0; πÞ] are
compatible with a spontaneous dimerization with columns
or rows of dimers. This possibility is clearly confirmed
by the dimer-dimer correlations of Fig. 4, which point to
well-developed long-range dimer order. These correla-
tions are very similar to those of SU(4), in which case
infinite projected entangled pair states simulations have
been able to further confirm the nature of the instability
[19]. So EDs clearly point to spontaneous dimerization
for SU(8). Of course, since it takes eight (or a multiple
of eight) sites to build a singlet for SU(8), the dimers

are not singlets, but they build an irrep of dimension
NðN − 1Þ=2 ¼ 28. Whether these effective degrees of
freedom develop some kind of order cannot be decided
on the basis of the present results.
Finally, the case of SU(10) is again quite different.

In that case, dimer-dimer correlations do not point to
any kind of dimer order, and there are several low-lying
singlets below the first nonsinglet excitation. This is
reminiscent of the situation observed in SU(2) quantum
spin liquids, such as the kagome antiferromagnet [39–41],
with which the present model shares another remarkable
property, a massive classical degeneracy [42]. So the most
likely possibility is that this system is a quantum spin
liquid.
To summarize, we have introduced a simple and explicit

formulation of the quantum permutation Hamiltonian
separately in each irreducible representation of SUðNÞ.
We have illustrated the power of the method on a problem
of considerable current interest, the properties of ultracold
multicomponent fermionic atoms loaded in an optical
lattice, opening the way to the investigation of much larger
values of N than accessible so far. This approach is also
expected to be very powerful on other problems. For
instance, it should be competitive even for smaller values
of N in the presence of disorder since there is no spatial
symmetry to reduce the size of the Hilbert space of standard
exact diagonalizations. The method can also be extended to
the general case of the SUðNÞ Heisenberg model with any
irrep at each site, a model relevant, e.g., to Mott phases with
more than one fermion per site for which chiral phases have
been predicted [24,25]. The very simple structure of the
basis and of the Hamiltonian should also lead to alternative
formulations of other numerical simulations, in particular,
density matrix renormalization group simulations. Work is
in progress along these lines.

The authors acknowledge P. Corboz, M. Hermele, A.
Läuchli, K. Penc, N. Schellekens, and J-B. Zuber for useful
discussions. This work has been supported by the Swiss
National Fund.

FIG. 3 (color online). Energy spectra (in units of J) for SU(5)
(20 sites), SU(8) (16 sites), and SU(10) (20 sites), plotted as a
function of the quadratic Casimir operator C2 (See Refs. [28,38]).
Different irreps with the same C2 [e.g., C2 ¼ 2 for SU(5)] are
represented with different colors. Below the SU(5) tower of
states, sketch of the long-ranged color ordered pattern consistent
with the real-space correlations of Fig. 2 and with flavor-wave
theory.

FIG. 4 (color online). Dimer-dimer correlations hPijPrefi −
hPrefi2 for SU(8) (16 sites) and SU(10) (20 sites). The reference
bond is shown in black while positive (negative) correlations are
shown as solid blue (dashed red) lines, with a thickness propor-
tional to the dimer-dimer correlation.
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