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Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii R in superfluid 4He
in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections
between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps
in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops
created after either one or two consecutive reconnections, are observed. The density of primary rings was
found to be capped at the value 500 cm−2R−1 independent of the injected density. This is due to collisions
between rings causing the piling up of many other vortex rings. Both observations are in quantitative
agreement with our theory.

DOI: 10.1103/PhysRevLett.113.125302 PACS numbers: 67.25.dk, 47.27.Cn, 47.32.cf

Turbulence appears in various systems—fluids, plasmas,
interstellar matter—with common properties such as the
existence of long-lived regions of concentrated vorticity,
whose reconnections facilitate the evolution of the flow
field and redistribution of the kinetic energy between length
scales. A paradigm of an isolated vortical structure is a
vortex ring [1,2], and their pair interactions are a test bed of
the physics of vortex reconnections. Numerical simulations
of collisions of two vortex rings predict various outcomes:
either a single ring or several rings, depending on the initial
conditions [3,4]. There were experimental attempts to
visualize these processes in classical fluids [5–7]; however,
they are often hard to interpret because of the inevitable
decay, core instabilities and poor characterization of vortex
rings in viscous fluids.
Quantized vortex rings in superfluids have an advantage

because they are slender and stable, and can hence be well
characterized quantitatively [8]. Recently, there were many
theoretical investigations into reconnections of quantized
vortex lines [3,4,9–23]. In particular, for acute angles between
two antiparallel reconnecting vortex lines the generation of a
cascade of small vortex rings was predicted [20,21,31]. The
outcome is reminiscent of that of the Crow instability [24] of
antiparallel vortices observed in air. Experimentally, recon-
nections of vortex lines in superfluid 4He have been visual-
ized [25,26] but only at high temperatures when vortex
motion is damped. Reconnections of vortex loops comprising
a vortex tangle, i.e., quantum turbulence (QT) [27,28],
especially those leading to the emission of vortex rings
[29], are an important mechanism of redistributing energy
towards smaller length scales in QT [30–40].

In superfluid 3He-B [41] and 4He [42], collisions and
subsequent reconnections, in a dense beam of vortex rings,
generate QT. Longer and more intensive beams of rings
result in tangles that show large-scale velocity fluctuations
[43,44] and the late-time decay [41,42,45,46], both char-
acteristic of classical turbulence. This implies the existence
of the inverse cascade of energy from the small length
scales (of order ring radii) into which the initial energy is
injected—up to the size of the resulting tangle. It was
speculated [39] that the inverse cascade might be main-
tained by the merger of pairs of rings into larger loops. Yet,
no direct quantitative observations of ring-ring reconnec-
tions have been reported so far.
This Letter reports the first quantitative observations of

either one or two consecutive reconnections, and the
discovery of the ensuing universal state of depleted
density—within a beam of unidirectional quantized vortex
rings all of similar radii, with their number density n and
radius R under our control. The resulting mechanism of
seeding the large-scale velocity fluctuations out of a
seemingly random beam of vortex rings is suggested.
In our experiments, to create vortex rings of a required

size and to detect their arrival, each was tagged by an excess
electron trapped on the vortex core. Applying an electric
field along the x axis allowed small seed charged vortex
rings (CVRs), injected at x ¼ 0, to grow to the desired
radius RðxÞ, and also to trace the location of the recon-
nection process that resulted in small secondary charged
vortex rings. The radius of a quantized vortex ring is
directly related to its self-induced velocity, v ∼ κ=R, which
determines its arrival time at the collector at x ¼ d. The
numbers of primary and secondary vortex rings as a
function of their radii could be extracted from the time
dependence of the collector current IcðtÞ through time-of-
flight spectroscopy. The radius of primary rings at the
collector, RðdÞ, was varied within 1–6 μm, with number
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density nðdÞ between 104 and 107 cm−3, while the mean
radius of the seed CVRs was estimated as R̄0 ≤ 0.5 μm.
The energy of a CVR, subject to a potential ϕðxÞ, is

EðxÞ ¼ E0 þ eϕðxÞ in the absence of dissipation at
T < 0.5 K. The velocity and energy depend on R [2],

v ¼ κ

4πR

�
ΛðRÞ − 1

2

�
; E ¼ κ2ρR

2

�
ΛðRÞ − 3

2

�
; ð1Þ

where κ ¼ h=m4 is the circulation quantum, ρ is the density
of superfluid, Λ ¼ ln 8R

a0
, and a0 ¼ 1.3 Å [47].

A deeper insight can be gained within the approximation
for constant Λ ≈ 13 and uniform field ϕðxÞ ¼ U

d x. The
radius of a CVR then grows linearly with x,

RðxÞ ≈ R0 þ
2eU

ρκ2ðΛ − 3=2Þ
x
d
; ð2Þ

and the time for a CVR to travel from x ¼ 0 to x ¼ d,

τ1 ≈
4πd

κðΛ − 1=2ÞR0 þ
4πed

ρκ3ðΛ − 1Þ2U; ð3Þ

increases with energy eU because CVRs slow down as they
expand [see Eq. (1)]. In what follows, unless specified, we
will be using the approximation R0 ¼ 0.
With increasing density of CVRs, collisions become

more frequent. These collisions are caused by small
fluctuations in the direction and magnitude of the rings’
velocities—mainly due to the variations in initial radii δR0

and direction of the seed CVRs when injected at x ¼ 0.
Along with reconnections upon a direct collision, hydro-
dynamic dipole-dipole interactions between neighboring
CVRs (that grow in strength with increasing n and R—and
are hence the strongest near the collector at x → d) affect
the CVR’s velocities. The Coulomb repulsion between
neighboring CVRs of R > 1 μm is much weaker than their
hydrodynamic interaction.
A reconnection of two CVRs results in secondary vortex

loops, which are generally noncircular. The two trapped
electrons are now carried by either one or by two (if any)
of the secondary rings. One special case allows an exact
analysis of the consecutive trajectory of one of the
electrons—when a secondary CVR has a small initial radius
(R0 ≪ R). Then its initial deformation and direction of
motion can be disregarded, because, under the pull of the
electric field, it quickly gains sufficient energy and impulse
along the x direction, and so to a good accuracy can be treated
as a circular vortex ring [48,49]. If such singly charged loops
are created after collisions at some x ¼ x1, their arrival at the
collector (x ¼ d) at time τ2ðx1Þ ¼ τ1½ðx1d Þ2 þ ð1 − x1

d Þ2� will
be earlier than of any other CVRs with either a larger initial
size (slower) or double charge (more energetic, hence,
slower). The earliest arrival time,

τ�2 ≡minðτ2Þ ¼
τ1
2
; ð4Þ

will be for collisions at x1 ¼ d=2. Furthermore, if a secon-
dary small ring grows and then reconnects with another
vortex loop at some point x ¼ x2 (x1 < x2 < d), and this
creates a new small singly charged ring, the latter will
arrive at the collector at time τ3ðx1; x2Þ ¼ τ1½ðx1d Þ2þðx2d − x1

d Þ2 þ ð1 − x2
d Þ2�. The earliest arrival, at time

τ�3 ≡minðτ3Þ ¼
τ1
3
; ð5Þ

of these second-generation secondary CVRs will correspond
to two reconnections at x1 ¼ d=3 and x2 ¼ 2d=3.
The experimental cell [50], a cube-shaped volume

of side d ¼ 4.5 cm, was filled with isotopically pure liquid
4He [51] at pressure 0.1 bar and temperature 0.05 K
(see the inset in Fig. 1). Seed CVRs were injected through
a gridded opening in the center of one plate. They then
traveled along the axis of the container (x axis) towards the
center of the opposite plate to the collector electrode,
placed behind a Frisch grid of radius r ¼ 6.5 mm and
geometric transparency θ ¼ 0.92. All currents and poten-
tials are quoted with the opposite sign as if electrons had a
positive charge e. CVRs were subject to the propelling field
set by the potentials of plates ϕð0Þ ¼ 0 and ϕðdÞ ¼ U, thus
gaining energy eU while traveling between the injector and
collector grids [52]. The dependence ϕðxÞ was close to the
linear ϕ ¼ U x

d (see the inset in Fig. 2).
The seed CVRs resulted from reconnections within the

dense vortex tangle, generated by the current of electrons
emitted from a tungsten tip [55] behind the injector grid
through the voltage Utip. These seed CVRs are injected in a
broad range of angles; however, the impulse gained from
the strong driving field quickly forces them to travel in
nearly the same x direction with a relatively narrow
distribution of radii. The intensity and duration of the
injected pulse were controlled by adjusting Utip and its

4.5 cm

x = 0 x = dx

FIG. 1 (color online). Records of collector current, all for the
same drive voltageU ¼ 135 V, but for different tip voltagesUtip.
The theoretical arrival time for primary CVRs, τ1 [Eq. (3)], and of
the earliest arriving secondary CVRs of the first generation, τ�2
[Eq. (4)], and of the second generation, τ�3 [Eq. (5)}, are shown by
arrows. Inset: Experimental cell with an electric field pattern.
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duration Δt (all data presented here are for Δt ¼ 0.2 s). For
the same Utip and Δt, the total charge injected through the
grid was increasing with an increasing drive voltage U
nearly linearly for all studied voltages. To quantify the time
of flight τ1 of CVRs, we take the time interval between the
middle of the tip voltage pulse and the position of the
maximum of IcðtÞ (and subtract the electronics response
time of 0.03 s).
Typical records of the collector current, IcðtÞ, following

the injection of a pulse of CVRs are shown in Fig. 1. These
are all for the same drive voltage U ¼ 135 V but several
different injection currents. There is a well-defined peak at
time τ1 ≈ 1.0 s corresponding to the arrival of primary
CVRs. With increasing density of CVRs, this peak initially
grows in magnitude while maintaining its position, τ1, and
width, ∼Δt. At higher numbers of injected CVRs, however,
a broad pedestal begins to grow, coexisting with the original
peak (whose magnitude is now saturated). This broad
pedestal is due to the secondary CVRs that result from
collisions between primary CVRs. The current at t > τ1
reflects the arrivals of larger secondary vortex loops, while
that at the earlier arrival times t < τ1 are from smaller
secondary CVRs. A sharp step builds up at τ�2 ¼ τ1=2,
coinciding with the earliest possible arrival of the first
generation of secondary CVRs [Eq. (4)]. At the highest
intensity of injection, another sharp step begins to form at
τ�3 ¼ τ1=3, corresponding to the earliest possible arrival of
the second generation of secondary CVRs [Eq. (5)].
In Fig. 2, we show IcðtÞ, similar to those in Fig. 1, but

now for the same tip voltage Utip ¼ 440 V and four

different drive voltages U. With increasing U, the position
of the peak τ1 increases as expected for isolated CVRs,
Eq. (3). The peak’s magnitude ImðUÞ initially grows withU
but then, above U ¼ 68 V, decreases—even though the
total collected charge Qc ¼

R
∞
0 IcðtÞdt keeps increasing.

Simultaneously, the broad pedestal due to secondary CVRs
progressively overgrows the primary peak until completely
swamping it at U ¼ 270 V. The sharp steps due to the
earliest possible arrivals of secondary CVRs of the first
generation at τ1=2 [Eq. (4)] and second generation at τ1=3
[Eq. (5)] are labeled by arrows. We thus obtained quanti-
tative evidence of either single or two consecutive recon-
nections of CVRs during their motion from the injector to
collector. Furthermore, the substantial contribution to the
collector current right after the cutoffs indicates that very
small CVRs are created with high probability. This might
contradict the expectations that reconnections result in
vortex loops of a size comparable to the radius of curvature
of the initial vortex lines [33,36], but would support the
picture of a cascade of small vortex rings created by large-
amplitude Kelvin waves generated after a reconnection of
nearly antiparallel vortex lines when dissipation is small
[20,21,31].
In Fig. 3, the experimental arrival times τ1ðUÞ for several

intensities of the injection are plotted. For small drive
voltages U [i.e., when the radii of CVRs RðdÞ and density
of CVRs nðdÞ are small] the experimental points agree with
the theory for isolated CVRs [from Eqs. (1)–(2)]. To
characterize the range of the distribution of times of flight,

FIG. 2 (color online). Records of the collector current, all for
the same Utip ¼ 440 V, but different values of U. The right,
middle, and left arrows of the corresponding colors point at the
arrival time of primary CVRs, τ1, and the theoretical earliest
arrival times for secondary CVRs of the first [Eq. (4)] and second
[Eq. (5)] generations, respectively. The values of τ1 are defined as
the positions of sharp peaks, except for U ¼ 270 V—where
the peak due to primary CVRs is swamped by the broad pedestal
due to secondary CVRs; hence, the theoretical value of τ1
[see Fig. (3)] is used. For U ¼ 22.5 and 67.5 V, the signal is
too faint for the step at τ�3 to be observable. Inset: The electrostatic
potential ϕðxÞ along the cell’s axis.

FIG. 3 (color online). The elapsed times between the middle of
the emitter pulse and maximum of IcðtÞ vs U. Closed symbols
correspond to resolvable sharp peaks due to primary CVRs; open
symbols are for the broadened peaks due to secondary CVRs
where sharp peaks due to primary CVRs are no longer visible.
Vertical bars indicate the peak width at half-maximum. The solid
line shows the theoretical arrival times τ1 [Eqs. (1)–(2)] for
R0 ¼ 0.5 μm. The dashed line shows the approximate solution
for Λ ¼ 13 and effective R0 ¼ 0.8 μm [Eq. (3)]. Cartoons
illustrate the expansion and progression of (left) isolated primary
(red) CVRs at low density, and (right) a reconnection resulting in
secondary (blue) CVRs.
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the vertical bars show the width of IcðtÞ at the 0.5Im level.
One can see that at small U the width is constant, being
equal to the injection duration Δt ¼ 0.2 s. Above a certain
value of U ∼ 100 V (that decreases with the increasing
injection intensity, Utip), the collector pulse broadens and
the position of the maximum of IcðtÞ no longer agrees with
the theoretical prediction for isolated CVRs (this coincides
with the complete disappearance of the sharper peak due to
primary CVRs, as on the trace for U ¼ 270 V in Fig. 2);
secondary CVRs dominate IcðtÞ in these conditions of high
n and R.
The density of primary rings reaching the collector,

n1 ≡ nðdÞ, can be found from the value of the collector
current at its maximum [but only for the records IcðtÞ that
have a sharp peak at t ¼ τ1, dominant over the pedestal due
to the secondary CVRs],

Im ≈ θπr2en1v1 ≈
1

8
θr2ρκ3ðΛ − 1Þ2 n1

U
; ð6Þ

where the relation v1 ≡ vðdÞ ≈ ðρκ3ðΛ − 1Þ2Þ=ð8πeUÞ
[from Eqs. (1)–(2)] has been used. In Fig. 4, we plot n1
[calculated from the experimental values of ImðUÞ using
Eq. (6)] vs R1 ≡ RðdÞ, the radii of primary CVRs near the
collector [calculated from Eq. (2) with R0 ¼ 0). Again,
there are two regimes: at low R1, n1 increases with an
increase of either Utip or U, but at large R1, n1 becomes a
decreasing function ofU, independent ofUtip. Yet, the total
injected charge (as measured by the integral of the collector
current) increases monotonically at all U. In other words,
only at small R1 and n1 can the CVR’s density be controlled
by varying the injection current. At high R1, only a small
fraction of charge arrives with primary CVRs of now
universal density n1 ≈ 500 cm−2R−1

1 ; the rest (secondary
CVRs) contribute to the broad pedestal in IcðtÞ (Figs. 1, 2).
The density of primary rings in the beam nðx; tÞ, along

the trajectory xðtÞ, evolves according to Eq. (11) in [56]:

dn
dt

¼ −n
dv
dx

− f; ð7Þ

where −f is the rate of losses per unit volume and time, due
to ring-ring collisions. For small injected density and radii,
the collisions can be neglected, f ¼ 0, and the solution for
the density near the collector is

n1 ¼
8πImU

θπr2ρκ3ðΛ − 1Þ2 ; ð8Þ

i.e., it can be varied by changing either the injected density
of CVRs (characterized by Im) or drive voltage U—as
observed in the experiment. When collisions become rife at
higher densities and radii, accounting for the removal of
primary CVRs due to their binary collisions results in

n1R1 ¼
3

σ01δRd
¼ 4 × 103 cm−2; ð9Þ

where we used δR ¼ 0.5 μm and the geometric cross
section for collisions σ1 ¼ σ01R

2 with σ01 ¼ 4π.
Furthermore, the subsequent removal of primary CVRs
that bump into the slower loops [57] left after the described
collisions of primary CVRs will result in the solution,

n1R1¼
�

40π

ðΛ−1=2Þκσ01σ02δRΔtd
�

1=2
¼1×103 cm−2; ð10Þ

where the geometric cross section for these pileups is
estimated as σ2 ¼ σ02R

2 with σ02 ¼ 4
ffiffiffi
2

p
π. Both Eqs. (9)

and (10) reproduce the experimental universal dependence
n1R1 ¼ 500 cm−2 qualitatively, while Eq. (10) is actually
quite close quantitatively (our one-dimensional model
underestimates f by disregarding the transverse component
of the relative motion of primary CVRs and hence over-
estimates the value of n1R1 by a factor of 2 or so [56]).
The fact of occasional piling up of many primary CVRs,

in turn, helps to explain the appearance of large-scale
velocity fluctuations in the ensuing vortex tangle. In the
initial random beam of primary CVRs, the fluctuations of
the coarse-grained velocity on the length scales greater than
∼n−1=3 (“quasiclassical” flow) are small; the energy spec-
trum is concentrated around the small length scale of order
R. The small secondary vortex rings, observed in this work,
and Kelvin waves excited by reconnections are evidence of
the direct cascade of energy towards smaller length scales
[31–33,35,36,40]. However, following any of the pileups of
many vortex rings, strong fluctuations of the coarse-grained
velocity field on the quasiclassical length scales ≫ n−1=3

are being created. This is the inverse cascade of energy in
this strongly anisotropic system [37,39].
To summarize, we obtained quantitative evidence for

collisions and reconnections of pairs of unidirectional
vortex rings of similar radii that result in the creation of
vortex loops of unequal size, including many small ones.
We observed discrete steps at the time dependence of the
collector current, which correspond to the earliest arrivals

FIG. 4 (color online). Density of primary CVRs n vs their
radius R at x ¼ d measured for several different drive voltages U
(top axis) and injector tip voltages, Utip (see legend).
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of the first and second generations of secondary CVRs. As
each collision can cause a removal of many primary vortex
rings, increasing the density of injected CVRs results in a
new state in which the density of primary vortex rings is
maintained at the critically depleted level independent of
their initial density. The larger loops produced in the
collisions become the seeds of quasiclassical QT with
large-scale flow structures, which appear out of a seem-
ingly random beam of small quantized vortex rings.
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