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We analyze the impact of loss in lattices of coupled optical waveguides and find that, in such a case,
the hopping between adjacent waveguides is necessarily complex. This results not only in a transition of the
light spreading from ballistic to diffusive, but also in a new kind of diffraction that is caused by loss
dispersion. We prove our theoretical results with experimental observations.

DOI: 10.1103/PhysRevLett.113.123903 PACS numbers: 42.25.Bs, 42.79.Gn, 72.10.Bg, 73.23.Ad

Absorption is an intrinsic feature of photonic systems,
arising due to the laws of causality [1]. It results in
decoherence and, hence, in a considerable change in the
dynamics of optical waves. However, it is generally agreed
that, in the particular case of homogeneous and isotropic
loss, the impact on the amplitude distribution in the
system vanishes, besides a global decay of the integrated
power [1]. A very prominent photonic system is arrays of
evanescently coupled waveguides [2], where a tailored
absorption (or absorption and gain) distribution is the basis
for a multitude of unexpected physical phenomena, such as
exceptional points [3], unusual beam dynamics [4], sponta-
neous PT-symmetry breaking [5], nonreciprocal Bloch
oscillations [6] and dynamic localization [7], unidirectional
cloaking [8], and even tachyonic transport [9]. Owing to
the intuition described above, if all lattice sites exhibit
exactly the same absorption, its impact vanishes in the
evolution equations of these systems. In a more math-
ematical language, in this case absorption adds to the
Hamiltonian as a pure diagonal matrix with identical
elements, which can be removed by normalization.
In our work, we show that absorption in coupled

waveguide systems does always impact the light dynamics,
even if it is homogeneous and isotropic in all lattice sites.
Because of the imaginary part of the dielectric function
(that describes the absorption), imaginary off-diagonal
elements in the Hamiltonian appear that cannot be removed
by normalization, causing significant deviations in the light
dynamics compared to the Hermitian case. However, our
theory holds for all Schrödinger-type systems that can be
mapped onto a tight-binding lattice, e.g., paraxial waves in
optics or mechanics as well as quantum dynamics in spin
chains, population transfer in multilevel systems, and
graphene. Our theory supplements the knowledge about

the influence of non-Hermiticity to all these systems, in
general, including the effect of PT symmetry.
In order to study the impact of absorption in such

systems, we consider a one-dimensional array of N
identical single mode optical waveguides with width 2w,
intersite spacing d, and the complex relative electric
permittivity ϵþ iϵ0 at the positions xn (n ¼ 1; 2;…; N),
which is surrounded by a bulk material (with ϵ0 þ iϵ00).
A sketch of this system is shown in Fig. 1.
The dynamics of wave propagating through this system

is governed by the Helmholtz wave equation

½∇2 þ k20 ~εðxÞ�ψðx; zÞ ¼ 0; ð1Þ

where ψðx; zÞ is the electric field amplitude, k0 ¼ ω=c is
the propagation constant in free space, and ~εðxÞ is the
relative electric permittivity profile of the system. The
relative electric permittivity distribution of the entire
structure can be written as a sum of individual waveguide
contributions, such that

FIG. 1 (color online). One-dimensional array of identical
absorbing optical waveguides. The complex relative electric
permittivity of all waveguides is ϵþ iϵ0, while the surrounding
medium is fused silica with relative electric permittivity ϵ0 þ iϵ00.
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~εðxÞ ¼ ϵ0 þ iϵ00 þ
XN
n¼1

½ðϵ − ϵ0Þ þ iðϵ0 − ϵ00Þ�ζnðxÞ: ð2Þ

Here, we used ζnðxÞ ¼ Hðx − xn þ wÞ −Hðx − xn − wÞ
[with HðxÞ as the Heaviside step function]. In the tight-
binding approximation, the full field ψðx; zÞ can be written
as a superposition of individual waveguide modes:

ψðx; zÞ ¼
XN
n¼1

ϕnðzÞuðx − xnÞeiβz; ð3Þ

where β is the waveguide’s propagation constant
(k0

ffiffiffiffiffi
ϵ0

p
< β < k0

ffiffiffi
ϵ

p
), whereas uðx − xnÞ and ϕnðzÞ re-

present the normalized transverse mode profile and the
field amplitude in the nth waveguide, respectively. After a
somewhat lengthy but straightforward calculation (see
Supplemental Material for details [10]), one obtains the
coupled-mode equations for the light evolution in the
non-Hermitian lattice:

−i
dϕn

dz
¼ iκϕn þ ðCþ iC0Þðϕnþ1 þ ϕn−1Þ: ð4Þ

Here,

κ ¼ k20
2β

�
ϵ00 þ ðϵ0 − ϵ00Þ tanh

�
w
l

��
ð5Þ

is the loss coefficient (l is the width of the eigenmode), and

C ¼ ðϵ − ϵ0Þk20
2β

w
l
exp

�
−
d
l

�
; ð6Þ

C0 ¼ ðϵ00 − ϵ0Þk20
β

d
l
exp

�
−
d
l

�
ð7Þ

represent the real and imaginary part of the intersite
hopping rate, respectively. Note that the diagonal term
iκϕn can be removed by the normalization ϕn ¼ Ene−κz,
whereas the off-diagonal terms iC0ϕn cannot. It is therefore
evident that for any absorption present in the waveguides
the light dynamics will be affected. Interestingly, for a
given absorption profile, one finds the relation

C0 ¼ αC ð8Þ
between the real and the imaginary part of the intersite
hopping, with

α ¼ 2
ðϵ00 − ϵ0Þ
ðϵ − ϵ0Þ

d
w

ð9Þ

as the absorption discrepancy. Therefore, the imaginary
part C0 is always in a fixed ratio to the real part C of the
hopping. Note that the absorption discrepancy itself is

proportional to the intersite spacing d. We note that the
absorption discrepancy α vanishes for ϵ00 → ϵ0, i.e., when
not only the absorption in the lattice is homogeneous, but
the absorption in the entire system (that is, in the lattice and
the surrounding bulk material).
There are several important consequences arising from

the appearance of an additional imaginary off-diagonal
term in the Hamiltonian. First, we find that, for any loss
discrepancy (i.e., α ≠ 0), the light spreading is ballistic for
distances z ≪ zcrit with

zcrit ¼
1

4αC
ð10Þ

but slows down to diffusive for z ≫ zcrit (see Fig. 2). This
can be seen by taking into account the Green’s function of
Eq. (4):

EnðzÞ ¼ inJn½2ð1þ iαÞCz�: ð11Þ

The variance of this evolving wave packet is (see
Supplemental Material for details on the calculation [10])

σ2ðzÞ ¼
�
αþ 1

α

�
Cz

I1ð4αCzÞ
I0ð4αCzÞ

; ð12Þ

which can be approximated as

σ2ðzÞ →
4αCz≪1

2ð1þ α2ÞC2z2 ðballisticÞ; ð13Þ

σ2ðzÞ →
4αCz≫1

�
1þ α2

α

�
Cz ðdiffusiveÞ: ð14Þ

Hence, even for minimal loss decoherence effects impact
the wave packet evolution, resulting eventually in a
diffusive spreading behavior for sufficiently large propa-
gation distances despite the fact that the lattice exhibits full
translational symmetry.

FIG. 2 (color online). Evolution in a waveguide array, where
each waveguide exhibits the same loss, resulting in α ¼ 0.15.
Clearly, after zcrit (red dashed line), the light spreading changes
from ballistic to diffusive. The power is normalized to 1 at every z.
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Importantly, for any given initial condition, the field
evolution is completely controlled by the dispersion rela-
tion kzðkxÞ. It relates the longitudinal wave number kz to the
transverse wave number kx (which we normalized by the
lattice spacing) and determines how the individual Fourier
components dephase during propagation. Following the
coupled-mode equations for the normalized amplitudes En,
the complex dispersion relation reads as

kzðkxÞ ¼ 2C cosðkxÞ þ i2C0 cosðkxÞ: ð15Þ
In order to study the impact of this dispersion relation on
the light evolution, we follow the analysis performed in
Ref. [11] and apply it to our complex dispersion. When a
broad beam is launched into the lattice around a fixed
central wave number kx;0, the dispersion relation (15) can
be expanded into a Taylor series:

kzðkxÞ ≈ kz;0 þ γðkx − kx;0Þ þ
δ

2
ðkx − kx;0Þ2; ð16Þ

with

kz;0 ¼ kzðkx;0Þ ¼ 2C cosðkx;0Þ þ i2C0 cosðkx;0Þ
¼ kz;r þ ikz;i; ð17Þ

γ ¼ dkz
dkx

����
kx;0

¼ −2C sinðkx;0Þ − i2C0 sinðkx;0Þ

¼ γr þ iγi; ð18Þ

δ ¼ d2kz
dk2x

����
kx;0

¼ −2C cosðkx;0Þ − i2C0 cosðkx;0Þ

¼ δr þ iδi: ð19Þ

A plot of these quantities is shown in Fig. 3. As the formal
solution of Eq. (4) is given by Fourier decomposition,
inserting Eq. (16) into this solution shows that the evolution
of broad beams can be described by the partial differential
equation

�
i
∂
∂z − ðiγr − γiÞ

∂
∂n −

�
δr
2
þ i

δi
2

� ∂2

∂n2
�
aðn; zÞ ¼ 0

ð20Þ
of the distributed amplitude function

aðn; zÞ ¼ exp f−ið½kz;r þ ikz;i�zþ kx;0nÞgEnðzÞ: ð21Þ

However, it is very important to note that the validity of
Eq. (20) depends strongly on the approximation of the
dispersion relation Eq. (16). If we assume that the center of
mass of the normalized amplitudes Enðn; zÞ in the kx space
moves along kx;cðzÞ and has a variance Δk2xðzÞ, then our
approximation of the dispersion relation limits the entire
analysis to cases where

jkx;cðzÞ − kx;0j ≪ 1 and
1

3!
½ΔkxðzÞ�3 ≪ 1 ð22Þ

(for a detailed argumentation of these requirements, see
Supplemental Material [10]).
The impact of the dispersion relation on the evolution of

broad beams is best illustrated when in Eq. (20) each term is
individually analyzed, i.e., when only one quantity from
the set [γr, γi, δr, δi] is taken into account and the others are
set to zero. Moreover, we would like to illustrate the new
dynamics for an initially tilted Gaussian beam

Eðn; z ¼ 0Þ ¼ a0 exp

�
−
n2

w2
0

þ ikx;0n

�
; ð23Þ

where w0 is the initial beam width. In this case, the two
conditions of Eq. (22) are equivalent to

����
2γiz

w2
0 þ 2δiz

���� ≪ 1; w2
0 þ 2δiz ≫ 1: ð24Þ

For only δr ≠ 0, these two conditions simplify to w0 ≫ 1,
such that Eq. (20) reduces to

i
∂
∂z aðn; zÞ ¼

δr
2

∂2

∂n2 aðn; zÞ; ð25Þ

which is the paraxial wave equation. Therefore, δr represents
the diffraction strength and can be positive or negative,
depending on the transverse wave number kx;0, i.e., the initial
tilt of the beam. Importantly, the beam width always
increases for both δr > 0 and δr < 0 and stays constant

FIG. 3 (color online). (a) The real and imaginary parts of
kzðkx;0Þ. (b) The real and imaginary parts of γðkx;0Þ. (c) The real
and imaginary parts of δðkx;0Þ.
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for δr ¼ 0. The term iγr∂=∂n in Eq. (20) can be removed by
the coordinate transformation n → nþ γrz, suggesting that
γr is a group velocity (which can be also positive or negative,
depending on kx;0). This is consistent with the Hermitian
case [11]. However, in the non-Hermitian case, there are two
more quantities [γi and δi]. Interestingly, when taking into
account only δi, Eq. (20) reduces to

∂
∂z aðn; zÞ ¼

δi
2

∂2

∂n2 aðn; zÞ; ð26Þ

which is a diffusion equation. Therefore, the quantity δi can
be associated with a diffusion coefficient. The solution of this
equation for the initial condition (23) reads as

aðn; zÞ ¼ a0
w0

wðzÞ exp
�
−

n2

w2ðzÞ
�
; ð27Þ

with the beam width

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
0 þ 2δiz

q
: ð28Þ

According to Eq. (24), this result is valid if

w2
0 þ 2δiz ≫ 1: ð29Þ

Also δi can be positive or negative; however, the beam
behaves differently in both cases (in contrast to δr). For
δi > 0, condition (29) is always satisfied for broad input
beams, and one finds that

wðzÞjz→∞ →
ffiffiffiffiffiffiffiffiffi
2δiz

p
; ð30Þ

which indeed characterizes diffusive broadening. For δi < 0,
in contrast, condition (29) is satisfied only for z ≪ w2

0=2jδij.
At larger distances, the expansion Eq. (16) is not valid
anymore, and standard discrete diffraction [2] dominates the
light evolution. Finally, when only the quantity γi is taken
into account, the conditions for the validity of Eq. (20) are
w0 ≫ 1 and z ≪ w2

0=2jγij. The evolution of the Gaussian
input beam is then described by

∂
∂z aðn; zÞ ¼ iγi

∂
∂n aðn; zÞ; ð31Þ

yielding the solution

aðn; zÞ ¼ a0 exp

�
−
2iγizn − ðγizÞ2 þ n2

w2
0

�
: ð32Þ

Hence, one can clearly see that γi causes only a deformation
of the phase front but leaves the general intensity profile of
the beam unchanged. Both δi as well as γi are intrinsic
features of the appearance of a complex coupling coefficient.
Consequently, the existence of a diffusive mobility regime
does not rely on a PT-symmetric loss distribution expressed

on the diagonal of the Hamiltonian [12]. Even the homo-
geneous loss, before thought to cause only a global,
exponential decay, will eventually force the wave function
to diffuse due to the so far not considered imaginary part of
the off-diagonal elements.
In order to prove the existence of the diffusive spreading

in waveguide lattices with a homogeneous loss distribution
(i.e., full translational symmetry), we perform experiments
in laser-written waveguide arrays in fused silica glass [13].
For the fabrication of the waveguides, we tightly focus
ultrashort laser pulses (wavelength 515 nm, pulse duration
308 fs, average power 222 mW, repetition rate 100 kHz) by
using a 40× objective into a 10 cm long fused silica glass
wafer, which is transversely translated with 250 mm=min
by using a high-precision positioning system. Each wave-
guide lattice consists of 45 waveguides, and the spacing
between the waveguides is 17 μm, which corresponds to
C ¼ 0.1 mm−1. We analyze the light evolution in the
structure by launching light at λ ¼ 633 nm into the central
guide by using fiber butt coupling and observe the light
evolution by a fluorescence microscope technique [14].
The light evolution in the lossless array is shown in
Fig. 4(a), exhibiting clearly ballistic spreading. The sit-
uation changes when strong loss is introduced to the
waveguides. This is done by writing the waveguides in a
sinusoidal fashion [12] with an amplitude (perpendicular

FIG. 4 (color online). (a) Experimental light evolution in a
waveguide lattice with negligible loss (left panel). Plotting the
extracted variance as a function of the propagation distance z in a
double-logarithmic plot results in a straight line, which has in the
ballistic case a slope of 2, represented by the blue line (right
panel). (b) Experimental light evolution in a waveguide lattice
with loss α ¼ 0.16 (left panel). In the double-logarithmic plot
of the extracted variance, one sees a transition from slope 2
(ballistic, blue line) to slope 1 (diffusive, red line). The latter was
fitted by using data from the orange area, resulting in a slope of
0.96, which is very close to the theoretical value of 1. In both
panels, zcrit is indicated by a red dashed line.
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to x) of 3 μm and a period of 3 mm, which enhances the
radiation losses of the guides. In this case, it is C0 ≠ 0,
and, hence, the spreading of the light field should change
from ballistic to diffusive after a particular propagation
distance. This is exactly what we observe in the experiment,
which is shown in Fig. 4(b). The transition occurs after
zcrit ≈ 16 mm, which implies α ¼ 0.16 [according to
Eq. (10)]. This is the experimental proof that, although
all waveguides exhibit the same loss, in Eq. (4) not only the
on-diagonal loss term κ has to be taken into account, but
also the off-diagonal imaginary coupling C0 that cannot be
removed by normalization.
In conclusion, we have shown that if losses are present in

a photonic waveguide lattice exhibiting translational sym-
metry, the intersite coupling is complex. This results in a
modified dispersion relation with an additional band due to
the complex coupling. As a further consequence, the light
spreading slows down from ballistic to diffusive after a
characteristic propagation distance that is determined by the
loss. We believe that our findings have a fundamental impact
on the understanding of light evolution in non-Hermitian
lattices, in particular, those with space-time reflection (PT)
symmetry [15,16]. Consequently, the loss effect on transport
[17], which could lead to regimes such as sub- or super-
diffusive or even superballistic ones [18], in addition to the
changes on the band structure as a result of higher order
couplings [19] are open questions for further investigations
[12]. It is also interesting to study the impact of our results on
the two-dimensional array of waveguides as candidates for
ultrahigh-capacity optical communications [20] or a spatio-
temporal vortex soliton (a result of the nonlinear Kerr effect)
[21,22] and their dynamical properties.
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