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We report the generation of two types of self-accelerating surface plasmon beams which are solutions
of the nonparaxial Helmholtz equation in two dimensions. These beams preserve their shape while
propagating along either elliptic (Mathieu beam) or parabolic (Weber beam) trajectories. We show that
owing to the nonparaxial nature of the Weber beam, it maintains its shape over a much larger distance along
the parabolic trajectory, with respect to the corresponding solution of the paraxial equation—the Airy
beam. Dynamic control of the trajectory is realized by translating the position of the illuminating free-space
beam. Finally, the ability of these beams to self-heal after blocking obstacles is demonstrated as well.
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“Self-accelerating” beams, i.e., beams that maintain their
shape while propagating along curved trajectories in free-
space, are raising great interest in recent years [1]. The Airy
wave function was the first to exhibit the above property. It
was suggested in the framework of quantum mechanics by
Berry and Balazs more than 30 years ago [2], as a solution
to the Schrodinger equation for a free particle. However,
only in 2007, optical Airy beams were suggested and
observed with free-space light beams [3,4] as a solution of
the paraxial Helmholtz equation, which is analogous to the
Schrodinger equation. Self-accelerating free-space beams
that accelerate along arbitrary convex trajectories have also
been realized [5,6]. Recently, a new group of accelerating
beams was introduced, i.e., half-Bessel, Mathieu, and
Weber beams [7—13]. These beams are exact solutions of
the nonparaxial Helmholtz equation, and therefore enable
one to achieve rapid acceleration, having much sharper
angles with respect to the optical axis. Self-accelerating
beams usually have two additional interesting features:
they are “diffraction-free”—i.e., preserve their shape while
propagating, and exhibit “self-healing”—even if part of the
beam is blocked by an obstacle, it returns to its original
shape. While these features describe infinite energy self-
accelerating beams, a finite energy beam can be obtained
by truncating the long transverse tails of these beams, e.g.,
using an exponential or Gaussian envelope. In this case, the
generated beam will exhibit these features only over finite
distance. All the above mentioned beams have a highly
asymmetric transverse shape, consisting of a large number
of side lobes, predominantly at one side of the optical axis.
The intensity of these side lobes decays as the distance from
the optical axis increases. The self-acceleration property
comes from constructive interference of light from these
side lobes, regenerating the peak intensity lobe along a
curved trajectory in space [14]. It is also important to note
that the center of mass of the truncated beams propagates in
a straight line, in accordance with Ehrenfest’s theorem [4].
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A unique feature of the Airy beam is that it maintains its
shape also in a two-dimensional system, consisting of a
single transverse coordinate in addition to the propagation
coordinate. Therefore, it can also exist as a surface wave,
such as a surface-plasmon-polariton (SPP) wave. SPPs
are electromagnetic waves that are coupled to collective
electron oscillations in the metal and propagate along the
interface between a dielectric and a metal layer. The electric
field decays exponentially normal to the dielectric metal
plane, and, in addition, exhibits decay in the propagation
direction. The ability to control and guide plasmonic light
waves has gained a lot of interest in recent years [15,16].
On-chip technologies such as surface plasmon circuitry
[17], subwavelength optical devices [18,19] and nanoscale
electro-optics [20], as well as new applications in biosens-
ing, optical trapping, and micromanipulation at the nano-
scale [21] were proposed and demonstrated. Plasmonics
can be used for interconnecting CMOS chips due to their
ability to guide light on small wires [22], and specifically to
obtain curved routing capabilities [23,24]. Indeed, plas-
monic self-accelerating Airy beams were proposed [25]
and experimentally demonstrated [26-29] by different
research groups wusing various experimental tools.
Plasmonic beams that propagate along arbitrary convex
caustic trajectories [30] were recently demonstrated as
well; however, these beams do not solve the propagation
equation and do not preserve their transverse shape while
propagating.

The above mentioned Mathieu and Weber beams are
solutions of the two-dimensional Helmholtz equation and
are therefore defined with only a single transverse coor-
dinate and a propagation coordinate. However, up until now
all the demonstrations of nonparaxial accelerating beams
were done in free-space, with a broad beam (approximating
a plane wave) in the third dimension. The realization of
these nonparaxial accelerating beams in a two dimensional
system remained an open challenge, since they need to be
excited from a free-space beam, having a different wave
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vector and, in addition, their transverse amplitude and
phase distribution should be defined with subwavelength
resolution. In this Letter, we demonstrate and examine,
both numerically and experimentally, the first realization of
rapidly accelerating Mathieu and Weber beams in a low-
dimensional system, as they are defined and, in particular,
as plasmonic surface waves.

Mathieu and Weber beams are the exact solutions of the
nonparaxial two-dimensional Helmholtz equation.
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where k is the wave vector and A is the complex amplitude.
Unlike the case of free-space beams which support both TE
and TM polarization [9], in the case of SPPs only TM
polarization is possible. Mathieu and Weber beams differ
by the coordinate systems in which they are described.
The Mathieu beam is a solution of the Helmholtz equation
in an elliptical coordinate system, and propagates along
an elliptical trajectory. It can be mathematically expressed
using

M(&.n) = R, (& q)lce,(nq) — ise,(mq)],  (2)

where £ and # are the elliptic coordinates, R, are the radial
Mathieu functions, ce,, and se,, are the even and odd angular
Mathieu functions, respectively [31], m is the order of the
functions, ¢ = h?k*/4, h = |a®> — b*|'/? is the interfocal
separation, and a and b are the axes of the ellipse. The elliptic
coordinates £ and 5 are defined as y = hsinh&sing
and z = hcosh £cosn. The Mathieu beam’s mathematical
expression can be written in the form of M(&n) =
R(£)®(n), where R and © express the solutions of the
Helmholtz equation. This form allows one to separate the
Helmbholtz equation into two independent sections: ©(z)
which describes the propagation of the beam and R(¢)
which describes the transverse beam’s profile. In elliptic
coordinates, ©() is almost constant and by transferring the
coordinate system to Cartesian, the trajectory becomes
elliptic [32]. While the intensity of the beam varies along
its trajectory, the lobes size and the overall shape remain
constant. For the special case of circular trajectory (a = b)—
the so-called half-Bessel beam [9]—the beam intensity
distribution becomes propagation invariant [12].

The Weber beam is described by a parabolic coordinate
system, and propagates along a parabolic trajectory. It can
be mathematically expressed using
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where n and £ are the parabolic coordinates, I'j=
I'(0.25 +iy/2), I's =T'(0.75 + iy/2), y is the dimension-
less parabolic momentum, and P are the parabolic cylinder
functions [31]. It is also possible to write these functions in
terms of the Kummer confluent hypergeometric function | F,
[31], which is the manner we have taken. The parabolic
coordinates n and & are defined according to the relation
y + iz = (n + i£)?/2. Similar to Mathieu, the Weber beam’s
mathematical expression is in the form of W(& ) =
D(E)I(n), where & and 9 express the solutions of the
Helmholtz equation. ®(&) describes the transverse beam’s
profile and 9(#) describes the propagation of the beam. The
dependence of the beam on the propagation coordinate 7 [7]
can be approximated by «[1/(>k/2y + 1)]'/4, since typi-
cally n < 1 the beam can be considered as diffraction-free
in the parabolic coordinate system—it is nearly independent
of the propagation coordinate and maintains its transverse
shape. By transferring the parabolic coordinates to Cartesian
coordinates system, the trajectory of the beam becomes
parabolic, since 9(1) is nearly constant [32].

The acceleration trajectories of both beams can be
expressed mathematically. For the Mathieu beam the
elliptical trajectory is defined by y = +b\/1 —(z/a)?
where a and b are the major and minor axes of the ellipse,
respectively, and for the Weber beam the parabolic trajec-
tory is defined by y = kz?/(4y), where y is the dimension-
less parabolic momentum [7]. The angle of every beam can
be represented by the derivative of the trajectory of this
beam by z. For the Weber beam the angle is dy/dz = kz/2y
and for the Mathieu beam the angle is dy/dz =
Fbz/(a*\/1— (z/a)?*). For the Airy beam the trajectory
is y = z2/(4k*x}), and therefore the angle is dy/dz =
z/(2k*x3). The size of x, should be considerably larger
than the wavelength in order for the Airy beam to satisfy
the paraxial approximation. In contrast to that, the Weber
and Mathieu beams do not possess this limitation, which
enables the beams to propagate with larger angles.

In order to generate plasmonic Mathieu and Weber beams,
it is required to couple a free-space illuminating beam into
the SPP beam and also to define its phase and amplitude
distribution. This was achieved using our recently developed
method for designing plasmonic holograms for the near-field
[33]. In this method, the phase mismatch between the wave
vectors of the free-space beam and the plasmonic beam is
matched by the reciprocal vector of the near-field hologram
in the direction of propagation, and therefore couples to the
SPP. This plasmonic hologram also encodes the transverse
phase ¢(z,y) and amplitude A(z, y) of the near field of the
desired Mathieu and Weber beams. The plasmonic binary
hologram was encoded according to [33,34]
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FIG. 1 (color online). (a) The experimental setup.(b) SEM
image of the plasmonic hologram which generated the plasmonic
Weber beam starting from z = —15um with y = 120.

where A is the modulation period, ¢ = sin~![A(z, )]/, and
hyg is the ridge height.

The SPPs were generated between a silver layer and air.
The thickness of the silver layer was 200 nm and it was
evaporated on top of a glass substrate. The silver layer was
coated with polymethyl methacrylate resist and the plas-
monic hologram was written using electron beam lithog-
raphy. Then, the resist was developed and another layer of
silver was evaporated. Finally, a liftoff process was per-
formed to remove the resist and the metal layer that covered
it. The thickness of the silver plasmonic hologram was set
to 50 nm. For the permittivity of the silver metal we used
&, = —58.04 4+ 0.6089i and ¢, = 1 for the permittivity of
the air. The decay length perpendicular to the propagation
direction is 11 nm in the metal and 640 nm in air. This is an
inherent property of surface plasmons and therefore the
realization of a self-accelerating beam is not affected by this
transverse decay. The decay in the propagation direction is
0.9 mm, and since we are measuring the beam profile at
much shorter distances, this decay is negligible. The
experimental setup is presented in Fig. 1(a)—the plasmonic
hologram is illuminated by a laser beam at wavelength of
1.064 pm, and the intensity distribution of the generated
SPPs between the silver and air was measured using a near-
field-scanning-optical microscope (NSOM—Nanonics
MultiView 2000). A SEM image of the plasmonic holo-
gram which generated the plasmonic Weber beam is
presented in Fig. 1(b). This mask was designed to generate
a Weber beam with y = 120 by exciting forty lobes. The
main lobe width was ~3 ym and the last lobe size
was ~0.5 ym.

The presented numerical simulations of the evaluation
and propagation of the self-accelerating SPPs were per-
formed based on the 2D Green function of the Helmholtz
equation. Figure 2 shows the comparison between the
numerical simulations and the measured NSOM results
for a plasmonic Mathieu beam accelerating from z = 0 ym
[Figs. 2(a) and 2(b)], a plasmonic circular Mathieu beam
starting from z = —15 ym [Figs. 2(c) and 2(d)], and
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FIG. 2 (color online). Comparison between measured and
simulated self-accelerating beams intensity distribution. Numeri-
cal simulations (a),(c),(e¢) and NSOM measurements (b),(d),(f)
of a Mathieu beam starting from z = 0 um, circular Mathieu
starting at z = —15 ym and Weber beam starting from z =
—15 um with y = 120, respectively. The dashed white line
represents the analytical trajectory of the beam.

plasmonic Weber beams accelerating from z = —15 ym
[Figs. 2(e) and 2(f)]. It is clearly seen that there is good
agreement between the simulations and the experimental
results. It is also seen that all the measured beams are
propagating along the designed acceleration trajectory
(white dashed lines). As expected from the inherent finite
size of the masks, the beams deviate from the analytical
trajectory at a certain point. This deviation occurs sooner
when sharp bends are sought as expected from finite energy
beams. We note that the smaller lobes are excited with
lower efficiency in the experiment, causing a faster
deviation from the target curve. This is caused by the
Gaussian distribution of the illuminating free-space beam,
whereas our design assumed plane-wave illumination. We
also note that the vast freedom of this method allows one to
arbitrarily choose the starting z value of the accelerating
beam, being limited mainly by the fabrication process, as
the hologram’s features get smaller. The angles at 7z =
30 pm for the beams presented in Fig. 2 are 36.6° for Weber
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FIG. 3 (color online). Comparison between measured and
simulated Airy and Weber beams. Numerical simulations (a),
(c) and NSOM measurements (b),(d) of the intensity distribution
Weber beam with y = 120 and equivalent Airy beams. The
dashed white line represents the analytical trajectory of the beam.

beam with y = 120, 48.1° for circular Mathieu beam with
a = b = 40 um, and 37.2° for Mathieu beam with a = 42
and » = 32 ym. In comparison to the beams from Fig. 2,
the angle at z =30 um for the Airy beam, even with
Xy = 4, is 19.8°. Next, we compare the rapid acceleration
of the nonparaxial Weber beam with that of the paraxial
Airy beams. As both beams accelerate along a parabolic
trajectory, we defined an Airy beam Ai(x/x;) with a
characteristic size of xy = 0.82 ym and a corresponding
Weber beam with a parabolic momentum y = 120, so
that both beams have the same acceleration coefficient
of 1.24 x 10*[1/m]. The simulation and measurement
results are presented in Fig. 3 and it can be seen that
whereas the Airy beam deviates from this trajectory after
only a few microns of propagation and then breaks into
multiple lobes [35], the Weber beam preserves its shape
and propagates over a distance of ~40 um along the target
parabolic trajectory. This demonstration emphasizes the
advantages of the nonparaxial self-accelerating beams
over the paraxial-limited beams that were realized before.
In the Supplemental Material [32] we show the simu-
lation results of a systematic comparison between the
Airy and Weber beams as a function of the acceleration
coefficient.

By controlling the illumination angle of the input free-
space beam, it is possible to dynamically control the
direction of propagation of the launched self-accelerating
beams [36,37]. Here we realize this by illuminating the
plasmonic hologram with the tail of the free-space
Gaussian beam. By doing so, a tilted phase is being added
to the hologram and the beam’s direction can be changed.
Figure 4 shows the results of such measurements under
three different illumination states. This allows flexible
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FIG. 4 (color online). Dynamic control of the direction of
Weber beams. NSOM intensity distribution measurements (a),
(b),(c) of Weber beam with y = 120 illuminated with the top,
middle, and bottom part of the Gaussian free space beam,
respectively. The dashed white line represents the analytical
trajectory of the beam.

routing of the beam energy to different locations on the
surface.

Finally, we examine the self-healing property of the
generated beams. We note that this unique property is also
typical for other shape preserving beams such as Bessel,
Airy beams, and Cosine-Gauss beams [38]. We therefore
fabricated a sample in which an obstacle that blocked
the main lobe of the beam was added, by milling a small
rectangular region in the silver layer using a focused-ion-
beam. In this region only the dielectric substrate was left,
thereby blocking the plasmonic beam at this spot. As the
beam propagates, the main lobe is being reconstructed,
therefore exhibiting the expected self-healing property. The
results are presented in Fig. 5 for both plasmonic Mathieu
and Weber beams. Since the purpose of these measure-
ments was to show the phenomenon and not to compare
between the self-healing capabilities of the beams, the
blocking obstacles in the samples differed by their size and
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FIG. 5 (color online). Demonstration of the self-healing
property of plasmonic Weber (a) and Mathieu (b) beams, by
measuring their intensity distribution before and after a blocking
obstacle. The white dashed rectangle depicts the location of the
obstacle.
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location, thereby explaining the observed difference in the
healing dynamics.

In conclusion, in this work we presented the first reali-
zation of rapidly self-accelerating Weber and Mathieu
plasmonic surface waves. This realization can enable new
possibilities in photonics and plasmonics, which are no
longer limited by the paraxial approximation. It is worth
mentioning that Mathieu and Weber beams have been
already used for optical trapping and micromanipulation
in 3D [13], and therefore our demonstration may enable new
ways for particle manipulation near a metallic surface [21].
We also note that owing to the wave nature of the beams,
these beams can be also realized as other surface waves, such
as acoustic waves [39,40], ground radio waves, or surface
fluid waves, and in other types of low-dimensional systems
such as dielectric optical waveguides, graphene-based sys-
tems, etc. These waves are expected to be self-healing,
shape-preserving, and self-accelerating along nonparaxial
trajectories.
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