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To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner
solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity
involves N ¼ 4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well
defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike
geodesics anchored on the boundary. The correlators show a strong signature of the singularity around
horizon scales and decay at large boundary separation at different rates in different directions. More
generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This
leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in
long-wavelength features of the boundary wave function.
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Introduction.—A long-standing goal of quantum gravity
is to describe physics near singularities like the big bang or
inside black holes. Gauge-gravity duality is a powerful tool
to apply to this problem since it maps it into a problem in
ordinary QFTon a fixed spacetime background. To model a
cosmological singularity using holography, one needs to
construct an asymptotically anti–de Sitter (AdS) solution to
Einstein’s equation that evolves into (or from) a singularity
which extends all the way out to infinity. This was first
done in Refs. [1,2], but the dual field theory itself became
singular when the bulk singularity hit the boundary. In
Refs. [3,4], the same singular bulk solutions were reinter-
preted as being dual to a well-defined field theory on de
Sitter (dS) spacetime. However, it is not clear how (and
indeed whether) the dual field theory on dS space describes
the region near the singularity. This is because the probes
which are best understood, such as extremal surfaces which
end on the boundary, do not probe the region near the
singularity [5]. Models of this type were further explored in
Ref. [6], and other models were studied in Refs. [7–9].
Attempts to probe the black hole singularity were

somewhat more successful in that there are geodesics with
end points on the boundary which get arbitrarily close to
the singularity [10]. Unfortunately, it was shown that the
two-point correlator is not dominated by these geodesics,
although their effects could be seen by analytic continu-
ation [11]. Nevertheless, the presence of the black hole
horizon means that clear signatures of the singularity have
remained difficult to identify in the dual.
The goal of this Letter is to introduce a new holographic

model of a cosmological singularity which has the advan-
tages that (1) the dual field theory is simply strongly
coupled N ¼ 4 super Yang-Mills theory with a large
number N of colors on an anisotropic generalization of
de Sitter space and is manifestly well defined for all time,

and (2) there are bulk geodesics with end points on the
boundary which come close to the singularity. As a bonus,
one can solve for the equal time correlator analytically. We
indeed find distinctive behavior which, we argue, signals
the presence of the bulk singularity [14]. While singular-
ities are ultimately described by quantum gravity, i.e., the
small N regime, obtaining a field theory description of a
classical (large N) singularity is an important pioneering
step in recasting the problem of singularities in quantum
gravity in terms of the dual field theory. In particular, the
transition from large to smallN is a tractable problem in the
field theory but remains poorly understood in the bulk.
The solution.—Solutions to Einstein’s equation in five

dimensions with negative cosmological constant can be
obtained by starting with AdS5 in Poincaré coordinates and
replacing the flat Minkowski metric on each radial slice
with any Ricci flat metric. The Kasner metric

ds2 ¼ −dt2 þ t2p1dx21 þ t2p2dx22 þ t2p3dx23 ð1Þ

with
P

ipi ¼ 1 ¼ P
ip

2
i is a well-known Ricci flat metric

describing a homogeneous but anisotropic cosmology. It
has a singularity in the Weyl curvature at t ¼ 0. With this
metric on each radial slice of AdS5, we obtain [8]

ds2 ¼ 1

z2
ð−dt2 þ t2p1dx21 þ t2p2dx22 þ t2p3dx23 þ dz2Þ;

ð2Þ

where we have set the AdS radius to 1. It might appear that
the dual would have to live on a Kasner spacetime.
However, we can divide the metric in parentheses by
H2t2 where H is some constant, and replace the overall
conformal factor by H2t2=z2. Writing Ht ¼ eHτ, xi ¼
Hpiyi this yields the boundary metric
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ds2 ¼ −dτ2 þ
X
i

e−2ð1−piÞHτdy2i ; ð3Þ

which is an anisotropic deformation of dS space in flat
slicing. In addition to the obvious translational symmetries,
Eq. (2) is invariant under a dilation symmetry [15]:

z → λz; t → λt; xi → λð1−piÞxi: ð4Þ

This leaves the conformal factor Ht=z invariant and, thus,
acts as an isometry of the boundary metric (3).
Two-point correlator.—In the large N limit, the leading

contribution to the two-point correlator of an operator O of
high conformal dimension Δ in the dual strongly coupled
SUðNÞ Yang-Mills theory on Eq. (3) is given by the
(regulated) length of spacelike bulk geodesics connecting
the two points:

hψ jOðxÞOðx0Þjψi ¼ e−mLregðx;x0Þ; ð5Þ
where jψi is the state of the Yang-Mills theory, m is the
mass of the bulk field that is dual to the boundary
operator O, and Lregðx; x0Þ is the regularized length of
the bulk geodesic. When O is a scalar operator, we
have Δ ¼ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
.

The length of spacelike geodesics is infinite. As usual,
we regulate this length by introducing a cutoff when the
conformal factor becomes large, and subtracting the diver-
gent contribution from pure AdS. Writing ~z ¼ z=Ht, our
cutoff will be ~z ¼ ~ϵ.
We can solve for the bulk geodesics using the metric (2).

We consider equal-time correlators for two points separated
in the x1 direction only (hereafter, referred to as x). The
dilation symmetry (4) together with the translational
symmetry in x2 and x3 imply that the correlators depend
only on the proper boundary separation Lbdy between the
two points, and, of course, on the exponent p1, which we
hereafter denote as p. Without loss of generality, we take
the end points at z ¼ 0 to be ft ¼ 1; x ¼ �x̄g. Using t as a
parameter, the geodesic equations are

x00ðtÞt ¼ px0ðtÞ½−2þ t2px0ðtÞ2�; ð6Þ

z00ðtÞzðtÞ ¼ 1 − z0ðtÞ2 − t2p−1x0ðtÞ2½t − pzðtÞz0ðtÞ�: ð7Þ

The solutions of Eq. (6) are hypergeometric functions for
all p. For p ¼ �1=n, with integer n, the hypergeometric
functions simplify, which makes the analysis more trac-
table. We first compute the correlator in a simple non-
singular example before treating the case p ¼ −1=4 that
describes an anisotropic dS boundary dual to a bulk with a
genuine curvature singularity.
Correlators in theMilne universe: TheMilne solution is a

special case of the Kasner solution (2) where one of the
pi ¼ 1 and the rest are zero. This metric features a
coordinate singularity at t ¼ 0 and is simply flat space

in alternative coordinates. If p ¼ 0, the effective (2þ 1)-
dimensional metric determining geodesic motion is pre-
cisely AdS3. Hence, with our choice of boundary
conditions the geodesics lie entirely in the surface t ¼ 1.
In terms of the usual cutoff z ¼ ϵ, their length is L ¼
2 ln ð2x̄=ϵÞ ¼ 2 lnðLbdy=ϵÞ where Lbdy is the proper boun-
dary separation on the Minkowski boundary. With a cutoff
~ϵ ¼ ϵ=H appropriate for a boundary de Sitter metric,

L ¼ 2 ln

�
2x̄
H

H
ϵ

�
¼ 2 lnðLbdyÞ − 2 lnð~ϵÞ; ð8Þ

whereLbdy is now the proper boundary separation on the de
Sitter boundary. Hence, the correlator for a large-dimension
operator in a p ¼ 0 direction is given by

hOðx̄ÞOð−x̄Þip¼0 ¼ L−2Δ
bdy : ð9Þ

Note that the result is the same as flat space and indepen-
dent of H, as expected for a conformal field theory on a
conformally flat spacetime.
For p ¼ 1, the effective 2þ 1 metric seen by a geodesic

can be transformed into pure AdS3 in Poincaré coordi-
nates by the coordinate transformation ðt; xÞ → ðη; χÞ ¼
ðt cosh x; t sinh xÞ. Using this, we can obtain the length of a
geodesic anchored at x ¼ �x̄ and t ¼ 1 from the result for
p ¼ 0. This yields the following equal-time correlator:

hOðx̄ÞOð−x̄Þip¼1 ¼
�
2

H
sinh

�
H
2
Lbdy

��
−2Δ

; ð10Þ

which falls off exponentially with proper distance. This is
precisely the correlator in a thermal state with temper-
ature T ¼ H=2π.
Correlators in anisotropic de Sitter space: We now turn

to our central example p ¼ −1=4, which describes a
genuinely singular bulk solution. We will set H ¼ 1 for
convenience. For p ¼ −1=4, the solutions of Eqs. (6) and
(7) can be written as

xðwÞ ¼ 4

15

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ w

p ð8c2 − 4cwþ 3w2Þ; ð11Þ

zðwÞ ¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c½w3 − 1þ 3cð1 − w2Þ�;

q
ð12Þ

where w ¼ ffiffi
t

p
, and c is an integration constant. The

solutions (11) and (12) describe half of the geodesics from
the boundary at w ¼ 1 and x ¼ x̄ up to a turning point in
the interior at w ¼ w� where x ¼ 0. At the turning point
dt=dx ¼ 2wdw=dx ¼ 0, which implies dx=dw → ∞,
so w� ¼ −c.
Since Lbdy ¼ 2xð1Þ is quintic in

ffiffiffi
c

p
, there are five

possibly complex geodesics [17] corresponding to each
boundary separation Lbdy, which we require to be real and
positive. We must determine which ones contribute to the
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correlator. Figure 1 shows Lbdy as a function of the real part
of c. When ReðcÞ > −1, the geodesics curve towards the
singularity, and ReðcÞ > 0 geodesics even propagate all the
way through t ¼ 0 before turning around [19]. However,
we must discard the contributions from ReðcÞ > 0 geo-
desics because they would predict that the correlator
increases as the separation between the two points grows,
and they would result in an unphysical pole on a spacelike
surface on the boundary. Moreover, the geodesic approxi-
mation is only justified where the spacetime is analytic
[20], and our solution is certainly not analytic at t ¼ 0. The
net result is that the real geodesics of interest have −1 <
c < 0 and −c ≤ w ≤ 1. As c → 0, the geodesics approach
the singularity.
The length of the geodesic is given by the following

contour integral in the complex w plane

Z
dw

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3cþ 4c3

p
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcþ wÞp ð1 − wÞ½w2 þ ð1 − 3cÞðwþ 1Þ� ð13Þ

from w ¼ −c to w ¼ 1 − δ, where δ is given by the UV
cutoff ~ϵ ¼ zð1 − δÞ. (SinceH ¼ t ¼ 1, our dS cutoff agrees
with the standard cutoff in z.) The integral (13) has four
singularities, at w ¼ 1, w ¼ −c, and two simple poles at
w� ¼ 1

2
ð3c − 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð3c − 1Þðcþ 1Þp Þ. For c real and
negative we may directly integrate Eq. (13) along the real
axis, since the poles at w� do not lie on the contour of
integration. When c is complex, one simply deforms the
contour into the complex plane. Restricting to ReðcÞ < 0,
the integral gives

L ¼ 2tanh−1
�ð2c − ffiffiffiffiffiffiffiffiffiffi

1 − δ
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ 1 − δ
p

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p ð2c − 1Þ

�
; ð14Þ

which results in the following regulated length:

Lreg ¼ ln

�
−
64

9
cð1þ cÞð2c − 1Þ2

�
: ð15Þ

The divergence of Lreg at c ¼ −1 is easily seen to be the
usual short-distance singularity of the correlator: Lbdy ¼
8

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
for small Lbdy, so Lreg ¼ 2 lnLbdy.

Now consider the divergence at c ¼ 0. This occurs when
the boundary separation reaches the cosmological horizon
size Lhor. For Lbdy slightly larger than Lhor, there are bulk
geodesics which come close to the singularity before
returning to the boundary. As Lbdy → Lhor, these geodesics
approach a null geodesic lying entirely in the boundary
which “bounces” off I− (see Fig. 2).
In Ref. [10], a pole in the correlator was found

corresponding to a geodesic that bounces off a black hole
singularity. It was argued that this did not dominate the
correlator and could only be seen by analytic continuation
to a second Riemann sheet. In contrast, we believe that the
pole we see at the horizon scale is physical. This is because
(1) we are not in a thermal state, so there is no general
argument that such a pole cannot occur, and (2) our
divergence is associated with a null geodesic in the
boundary and not the bulk. Physically, the pole at the
horizon scale indicates that the initial state of the field
theory, which describes the bulk singularity, contains
particles created at each point on I−, moving in opposite
directions. At all later times, these particles will be
separated by the horizon scale.
The pole at the horizon scale in the correlator is

ðLbdy − LhorÞ−Δ, which is weaker than the pole at short
distances, which is L−2Δ

bdy . This is consistent with general
properties of quantum field theory.
The contributions to the equal-time correlator from the

one or two geodesics with ReðcÞ < 0 are shown in Fig. 3.
At small boundary separation, we obtain the requisite
divergence of L−2Δ

bdy from one real geodesic. At the horizon
size, a second real geodesic appears and produces the pole.
At approximately twice the horizon size, the two real
geodesics merge and are replaced by complex conjugate
geodesics. As Lbdy → ∞, its dependence on c simplifies to
Lbdy ∝ c5=2, and we find that the asymptotic two-point

1.0 0.5 0.5 1.0 Re c

1

2

3

4

5

Lbdy

FIG. 1 (color online). The proper boundary separation Lbdy as a
function of the real part of c for p ¼ −1=4. The solid curve
corresponds to real c, whereas the dashed curves correspond to
complex conjugate pairs of c. Note that there are five possible
geodesics for each Lbdy.

FIG. 2 (color online). A conformal diagram of the anisotropic
de Sitter boundary geometry shows that two points separated by
the horizon size can be connected by a null geodesic that bounces
off I−.
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correlator has a different falloff from the correlator in pure
de Sitter space:

hOðx̄ÞOð−x̄Þip¼−1=4 ∝ L−8Δ=5
bdy : ð16Þ

Correlations in the x direction are, therefore, enhanced in
the large separation limit in comparison with correlations in
de Sitter space. This difference is clearly due to the
anisotropy, and by extension, the bulk singularity.
The behavior for p ¼ −1=4 is typical of p < 0. One can

show [21] that when p < 0, geodesics always bend toward
the singularity, and there always exists a family of spacelike
geodesics which turn around close to the singularity. As
Lbdy → Lhor, these geodesics approach a null geodesic
lying entirely in the boundary. For p > 0, the bulk geo-
desics bend away from the singularity, so they do not
approach a null geodesic on the boundary at the horizon
size. As a result, the correlator does not have a pole at the
horizon scale in this case.
For general p < 1, the power law falloff with large

boundary separation appears to satisfy

hOðx̄ÞOð−x̄Þi ∝ L−2Δ=ð1−pÞ
bdy : ð17Þ

This holds in all cases we have checked, but we do not yet
have a general derivation. A suggestive way to view this is
the following: Our dilation symmetry implies that the
general equal-time correlator hOðx̄; t̄ÞOð−x̄; t̄Þi is only
a function of one variable ξ ¼ t̄=x̄ð1=1−pÞ. Equation (17)
states that for small ξ, this function is simply ξ2Δ. We
emphasize that this is different from the short-distance
behavior, which is always given by Eq. (9).
Discussion.—We have put N ¼ 4 super Yang-Mills

theory on an anisotropic deformation of de Sitter space
and studied the two-point function of a high-dimension
operator in a state dual to a cosmological singularity in the
bulk. We have found two unusual features: In directions
with p < 0, there is a pole precisely at the horizon scale,

and the large-distance falloff is a power law with a power
that depends on the local expansion rate. Further details and
explorations of the bulk cosmological singularity using
different holographic probes will be given elsewhere [21].
Since the inside region of black holes is like an anisotropic
cosmology, our setup may also be useful to better under-
stand black hole singularities.
We have focused on the singularity at t ¼ 0, but our

model contains another more subtle singularity at the
Poincaré horizon, z ¼ ∞. This can be viewed as a (null)
“big crunch” singularity in the future. Alternatively, it can
be removed by adding one compact dimension and starting
with a six-dimensional AdS soliton. One can again replace
the Minkowski slices with Kasner slices and have a big
crunch in the bulk; however, now the bulk smoothly ends at
finite z [22]. Our results about the pole will not be affected
since they only depend on geodesics near the boundary, but
the large-distance falloff will certainly be modified since
one now is in a confining vacuum.
So far, we have discussed solutions with an initial “big

bang” singularity. However, our results also apply to
Kasner-AdS solutions with a singularity in the future.
The bulk evolution from regular initial data towards the
future singularity will then have a dual description in
terms of N ¼ 4 super Yang-Mills theory on a deformed
dS space expanding at different rates in different
directions.
The anisotropic expansion of the boundary background

breaks conformal invariance and gives rise to particle
creation, just like a rolling scalar does in inflation in
cosmology [23]. The relevant length scales in this process
are the expansion rates in different directions. By analogy
with inflation, one expects that fluctuations will be in their
ground state on scales below these but exhibit particlelike
excitations on larger scales. This expectation is born out by
the form of the two-point correlator (17). For subhorizon
boundary separations, the correlator is at all times close to
that in exact dS space. By contrast, on scales larger than the
horizon in a given direction it deviates significantly from
the correlator in dS space reflecting the excited state on
those scales.
Hence, we are led to a picture in which the holographic

dual of cosmological singularities is given in terms of a
boundary wave function that describes an ensemble of
highly excited configurations on horizon and superhorizon
scales in an anisotropic de Sitter space. It, thus, appears that
signatures of the quantum nature of cosmological singu-
larities can be found in the classical long-wavelength
features predicted by the boundary theory.
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FIG. 3 (color online). Reðe−LregÞ as a function of the boundary
separation for p ¼ −1=4, computed from the bulk spacelike
geodesics with ReðcÞ < 0. The colors correspond to those in
Fig. 1; e.g., the red dashed line is the contribution from each of
the two complex conjugate geodesics.
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