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Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the
primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to
500 GeV are presented. The electron flux and the positron flux each require a description beyond a single
power-law spectrum. Both the electron flux and the positron flux change their behavior at ~30 GeV but
the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV
the positron spectral index is significantly harder than the electron spectral index. The determination of the
differing behavior of the spectral indices versus energy is a new observation and provides important
information on the origins of cosmic-ray electrons and positrons.

DOI: 10.1103/PhysRevLett.113.121102

Measurements of the electron flux and the positron
flux in primary cosmic rays with the Alpha Magnetic
Spectrometer (AMS) on the International Space Station
(ISS) are presented. The measurements are based on
41 x 10° events collected between May 19, 2011, and
November 26, 2013, and cover the energy ranges 0.5
to 700 GeV for electrons and 0.5 to 500 GeV for positrons.

AMS has measured the positron fraction,
b, /(P + P,-), as a function of energy from 0.5 to
350 GeV, where ®,+ is the flux of positrons and ®,- is

PACS numbers: 96.50.sb, 95.35.+d, 95.85.Ry, 98.70.Sa

the flux of electrons. The fraction was found to be steadily
increasing from 10to ~250 GeV, but from 20 to 250 GeV the
slope decreases by an order of magnitude [1]. The latest
results from AMS, based on a factor 1.7 increase in statistics,
extend the energy range of the previous observation to
500 GeV and increase its precision. They show that above
~200 GeV the positron fraction no longer increases with
energy [2]. The results from AMS on the positron fraction
generated widespread interest and discussions on the origin
of high-energy positrons [3]. Precise measurements of the
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individual electron and positron fluxes as a function of
energy provide insight into the origin of cosmic rays.

AMS detector.—The AMS detector [1,4] consists of a
permanent magnet, nine planes of precision silicon tracker,
a transition radiation detector (TRD), four planes of
time-of-flight (TOF) counters, an array of anticoincidence
counters, a ring imaging Cerenkov detector, and an electro-
magnetic calorimeter (ECAL). AMS operates continuously
on the ISS and is monitored and controlled around the
clock from the ground. The timing, location, and attitude
are determined by a combination of GPS units affixed to
AMS and to the ISS.

The tracker accurately determines the trajectory, momen-
tum p, charge |Z|, and charge sign of cosmic rays by
multiple measurements of the coordinates and energy loss.
The coordinate resolution of each plane is measured to be
better than 10 um in the bending direction and the charge
resolution is AZ ~0.06 for |Z| =1 particles. The maxi-
mum detectable rigidity (|p/Z|) of the tracker is 2 TV over
a lever arm of 3 m.

To differentiate between e* and protons in the TRD, this
analysis uses a TRD likelihood formed from the product of
the log-likelihood probabilities of the e* hypothesis from
the signals of the 20 layers of proportional tubes.

Signals from the 17 radiation length ECAL are scaled
to provide the incoming (top of AMS) energy E of
electrons and positrons. In the beam tests of the AMS
detector, the energy resolution has been measured to
be o(E)/E = /(0.104)>/E + (0.014)> (E in GeV). The
three-dimensional shower shape is described by an ECAL
estimator based on a boosted decision tree algorithm [5],
and this is used to separate e* from protons independently
from the TRD.

The entire detector has been extensively calibrated in a
test beam at CERN with e™ and e~ from 10 to 290 GeV/c,
with protons at 180 and 400 GeV/ ¢, and with 7+ from 10 to
180 GeV/c, which produce transition radiation equivalent
to protons up to 1.2 TeV/c. Measurements with 18 different
energies and particles at 2000 positions were performed. A
Monte Carlo program based on the GEANT 4.9.4 package [6]
is used to simulate physics processes and signals in the
detector. The detector performance is steady over time.

Data analysis.—The isotropic fluxes of cosmic-ray
electrons and positrons in the energy bin E of width AE
are given by

N (E)

e E) = B ews (E)T(E)AE"

e

(1)

where N,- is the number of electrons, N+ is the number of
positrons, A is the effective acceptance, €y, is the trigger
efficiency, and 7 is the exposure time. The effective
acceptance is defined as

Aggr = Ageomeseleid(1 + 6)’ (2)

where Ageon is the geometric acceptance, € is the
selection efficiency, €4 is the identification efficiency
for electrons or positrons, and § iS a minor correction
described below.

The geometric acceptance for this analysis is
Ageom = 550 cm? sr. The product Ageom€sei€ia 18 determined
from Monte Carlo simulation.

The trigger efficiency e, is determined from data. The
data acquisition system is triggered by the coincidence of
all four TOF planes. AMS also records unbiased triggers
that require a coincidence of any three out of the four
TOF planes to measure €g;,. It is found to be 100% above
3 GeV decreasing to 75% at 1 GeV.

The exposure time as a function of energy T(E) is
determined by counting the live time weighted number of
seconds at each location where the geomagnetic cutoff
requirement, see below, is satisfied. T(E) does not include
the time during TRD gas refills, time spent in the South
Atlantic Anomaly, and time when the AMS z axis was more
than 40° from the local zenith due to ISS operations. The
exposure time for this analysis at 5 GeV is 1.4 x 107 s, at
10 GeV it is 3.2 x 107 s, and above 30 GeV it is constant
at 6.1 x 107 s.

The absolute energy scale is verified by using minimum
ionizing particles and the ratio E/p. These results are
compared with the test beam values where the beam energy
is known to high precision. This comparison limits the
uncertainty of the absolute energy scale to 2% in the range
covered by the beam test results, 10-290 GeV. Below
10 GeV it increases to 5% at 0.5 GeV and above 290 GeV to
4% at 700 GeV. This is treated as an uncertainty of the bin
boundaries. The bin widths AE are chosen to be at least
2 times the energy resolution to minimize migration effects.
The bin-to-bin migration error is ~1% at 1 GeV; it
decreases to 0.2% above 10 GeV. With increasing energy
the bin width becomes smoothly wider to ensure adequate
statistics in each bin.

Events are selected by requiring the presence of a shower
in the ECAL and a reconstructed track in the TRD and in
the tracker. To identify downward-going particles of charge
|Z| = 1, cuts are applied on the velocity measured by the
TOF and on the charge reconstructed by the tracker, the
upper TOF planes, and the TRD. To reject positrons and
electrons produced by the interaction of primary cosmic
rays with the atmosphere, the minimum energy within the
bin is required to exceed 1.2 times the Stgrmer cutoff [7] for
either a positron or an electron at the geomagnetic location
where the particle was detected and at any angle within the
acceptance. The selection efficiency e, is determined from
the Monte Carlo simulation and found to be a smooth
function of energy with a value of ~70% at 100 GeV.

The identification of the e~ and e signal requires
rejection of the proton background. Cuts are applied on
the E/p matching and the reconstructed depth of the
shower maximum. This makes the negatively charged
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sample, as determined by the rigidity, a sample of pure
electrons. A cut on the ECAL estimator is applied to further
reduce the proton background in the positive rigidity
sample after which the numbers of positrons and protons
are comparable at all energies. The identification efficiency
€;q 1s defined using the Monte Carlo simulation as the
efficiency for electrons to pass these three cuts. It is
identical for both electrons and positrons.

In order to determine the correction J, a negative rigidity
sample is selected for every cut using information from the
detectors unrelated to that cut. The effects of the cut are
compared between data and Monte Carlo simulation. This
correction is found to be a smooth, slowly falling function
of energy. It is —2% at 10 GeV and —6% at 700 GeV.
The selection cut values and the identification cut values
are chosen to maximize the measurement accuracy of the
separate fluxes.

In each energy bin, a two-step fit procedure is
performed to determine N,+ and N,-. First, a template
fit is used to find the number of electrons plus positrons
reconstructed with a positive charge sign N* and the
number of electrons plus positrons reconstructed with a
negative charge sign N~—. The TRD templates, that is, the
shapes of the TRD likelihood distributions for signal and
background, are determined from data by selecting clean
samples of electrons and protons using the ECAL
estimator and the charge sign measured by the tracker.
The TRD templates for electrons and positrons are
identical. They are found to be independent of energy
above 10 GeV. A maximum-likelihood fit of the resulting
TRD templates to the data yields N*, N~, and the
number of protons in the bin.

Second, N and N~ are corrected for charge confusion.
Charge confusion occurs when an electron is recon-
structed as a positron and vice versa. There are two main
sources of charge confusion. The first is related to the
finite resolution of the tracker and multiple scattering. The
second is related to the production of secondary tracks
along the trajectory of the primary e*. Charge confusion
is determined using a dedicated estimator derived with a
boosted decision tree technique which combines all the
information from the tracker such as the track )(2, the
rigidity reconstructed using different sets of tracker layers,
and the number of hits in the vicinity of the track. In each
energy bin, two tracker templates are defined, one for
particles with correctly reconstructed charge sign and
another for particles with wrongly reconstructed charge
sign. The former is defined using the negative rigidity data
sample. The latter is based on the Monte Carlo simulation.
These tracker templates are fit to data, bin by bin, to
obtain the amount of charge confusion resulting in the
determination of N,+ and N,-.

In total, 9.23 x 10° events are identified as electrons and
0.58 x 10° as positrons. These numbers are slightly less
than the numbers in our positron fraction publication [2]

due to tighter selection criteria (such as on the exposure
time) used to minimize the uncertainty of the separate flux
measurements.

The systematic error associated with the uncertainty of
the TRD template shapes for the signal and the background
is due to the finite accuracy of the TRD alignment and
calibration as well as to the statistics of the data samples
used to construct the templates. This is the leading
contribution to the total systematic error above 300 GeV.

The amount of charge confusion is well reproduced by
the Monte Carlo simulation and a systematic uncertainty
takes into account the small differences between data and
the Monte Carlo simulation. This uncertainty is only
significant for N,+ in the highest energy bin.

The systematic error on the effective acceptance is
given by the uncertainties on 6. For every cut, this
uncertainty is derived from the comparison between
data and the Monte Carlo simulation. This includes an
overall scaling uncertainty of 2%, which introduces
a correlation between energy bins and between the
electron and positron fluxes. The acceptance uncertainty
is the leading contribution to the systematic error below
300 GeV.

The total systematic error is taken as the quadratic sum of
these three contributions and the minute bin-to-bin migra-
tion systematic. As an example, in the energy bin from
59.1 to 63.0 GeV, the statistical error on the positron flux is
4.9% and the total systematic error is 2.9% with 0.8% from
the TRD templates, 0.4% from charge confusion, 2.8%
from the effective acceptance, and 0.2% from bin-to-bin
migration.

The complete analysis has been repeated 30 times with
different sets of selection and identification cut values. All
cuts have been varied in large ranges with the constraint
that they lead, in combination, to a similar background
rejection. The results of these analyses were found to be
consistent. In addition, the time stability of the counting
rates of N+ has been studied. At high energies, all the rates
are found to be stable, whereas at low energies, <10 GeV,
variations with time are observed, as expected from solar
modulation. Most importantly, several independent analy-
ses were performed on the same data sample by different
study groups. The results of those analyses are consistent
with the results presented here.

Results.—The measured positron and electron fluxes are
presented in Table I as a function of the energy at the top of
AMS. The table also contains a representative value of the
energy in the bin E calculated according to Ref. [8] for a
flux « E~3 and the uncertainty on E. _

The electron and positron fluxes multiplied by E* are
presented in Fig. 1 together with the most recent measure-
ments [9,10] for comparison. Figure 2 shows the detailed
behavior for both electrons and positrons below 200 GeV
together with previous measurements [9-14] in this energy
range. Below ~10 GeV, the behavior for both electrons and
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TABLE L

Results for the electron and positron fluxes according to Eq. (1) in units of [m? Sr's GeV]~

! E is as described in the text with

its systematic error derived from the energy scale uncertainty. The bin boundaries and E are the energies at the top of AMS. The
systematic uncertainties include an overall scaling uncertainty of 2%, which introduces a correlation between energy bins and between
the electron and positron fluxes.

Energy (GeV) E (GeV) D, £ Oy = Oyst D+ £ Oy £ Osyst
0.50-0.65 0.57+0.03 (1.47 £0.03 £0.16) x 10! (1.31 £0.20 & 0.23) x 10°
0.65-0.82 0.73 £0.03 (2.43 +0.02 £ 0.16) x 10! (2.324+0.08 £ 0.27) x 10°
0.82-1.01 0.91 4 0.04 (2.08 +0.01 4 0.14) x 10! (1.91 £ 0.04 + 0.15) x 10°
1.01-1.22 1.11 +£0.05 (1.83 £0.01 £ 0.12) x 10! (1.5540.02 £ 0.10) x 10°
1.22-1.46 1.33 £0.05 (1.64 £ 0.00 £ 0.09) x 10! (1.34 4 0.01 £ 0.08) x 10°
1.46-1.72 1.58 £0.06 (1.37 4 0.00 £ 0.07) x 10! (1.06 4+ 0.01 £ 0.05) x 10°
1.72-2.00 1.85 +£0.07 (1.11 £0.00 £ 0.05) x 10! (8.01 0.05 £0.38) x 107!
2.00-2.31 2.15+0.08 (8.94 4 0.01 £ 0.40) x 10° (6.19 4 0.04 £0.28) x 107!
2.31-2.65 2.47 £0.08 (7.10 £ 0.01 £ 0.30) x 10° (4.59 £0.03 £0.19) x 107!
2.65-3.00 2.82 +£0.09 (5.49 4+ 0.01 £ 0.22) x 10° (3.43 £0.02 £0.14) x 107!
3.00-3.36 3.17£0.10 (4.61 +0.01 £0.17) x 10° (2,78 4£0.02 £0.11) x 107!
3.36-3.73 3.54£0.11 (3.62 4+ 0.01 £0.13) x 10° (2.1240.01 £0.08) x 107!
3.73-4.12 3.92+£0.12 (2.87 £0.00 & 0.10) x 10° (1.64 £0.01 £0.06) x 107!
4.12-4.54 432+0.12 (2.27 £ 0.00 £ 0.08) x 10° (1.28 £ 0.01 £ 0.04) x 107!
4.54-5.00 476 +£0.13 (1.80 £ 0.00 £ 0.06) x 10° (9.86 £ 0.07 £ 0.32) x 1072
5.00-5.49 5.4 £0.14 (1.42 £ 0.00 % 0.04) x 10° (7.76 +0.05 4 0.24) x 102
5.49-6.00 5.74 £0.15 (1.11 4 0.00 £ 0.03) x 10° (5.9440.04 £0.18) x 1072
6.00-6.54 6.26 £ 0.15 (8.80 4-0.01 £0.25) x 107! (4.69 4+ 0.04 £0.14) x 1072
6.54-7.10 6.81 +0.16 (6.9540.01 £0.20) x 107! (3.744+0.03 £0.11) x 1072
7.10-7.69 7.39+£0.17 (5.51 £0.01 £0.15) x 107! (2.94 £0.02 £ 0.09) x 1072
7.69-8.30 7.99 £0.18 (4.36 £ 0.01 £0.12) x 107! (2.344+0.02 £0.07) x 1072
8.30-8.95 8.62 £ 0.19 (3.50 £ 0.01 £0.10) x 107! (1.91 £0.02 £ 0.05) x 1072
8.95-9.62 9.28 £0.19 (2.78 4 0.01 £0.08) x 107! (1.50 4+ 0.02 £ 0.04) x 1072
9.62-10.3 9.96 £ 0.20 (2.24 4-0.01 £0.06) x 107! (1.2540.01 £0.04) x 1072
10.3-11.0 10.7£0.2 (1.79 £0.00 £ 0.04) x 107! (1.01 +0.01 £0.03) x 1072
11.0-11.8 11.4+02 (1.47 £ 0.00 £ 0.03) x 10! (8.30 £ 0.10 = 0.21) x 1073
11.8-12.6 122402 (1.19 £ 0.00 = 0.03) x 10~! (6.81 £ 0.09 £ 0.17) x 103
12.6-13.4 13.0+0.3 (9.73 4 0.03 £0.23) x 1072 (5.76 +0.08 £0.14) x 1073
13.4-14.2 13.8+£0.3 (7.97 4 0.03 £0.19) x 1072 (4.60 +0.07 £0.11) x 1073
14.2-15.1 1474+0.3 (6.56 +0.02 £ 0.15) x 1072 (3.84 4 0.06 +0.09) x 1073
15.1-16.1 156+0.3 (5.39 £0.02 £0.13) x 1072 (3.334+0.05£0.08) x 1073
16.1-17.0 16.5+0.3 (4.48 £ 0.02 £ 0.11) x 1072 (2.81 £ 0.05 = 0.07) x 1073
17.0-18.0 175+£0.3 (3.71 £0.02 £0.09) x 1072 (2.37 £0.04 £0.06) x 1073
18.0-19.0 18.5+0.4 (3.10 4+ 0.01 £0.07) x 1072 (2.01 +0.04 £0.05) x 1073
19.0-20.0 19.5+04 (2.59 4 0.01 £ 0.06) x 1072 (1.74 4 0.03 £0.04) x 1073
20.0-21.1 20.6 £ 0.4 (2.17 4 0.01 £0.05) x 1072 (1.44 40.03 £0.04) x 1073
21.1-22.2 21.74+04 (1.82 £ 0.01 = 0.04) x 1072 (1.22 £ 0.03 = 0.03) x 1073
222234 22.8+0.5 (1.56 £ 0.01 = 0.04) x 102 (1.05 + 0.02 + 0.03) x 10~
23.4-24.6 24.0+0.5 (1.31 £ 0.01 £ 0.03) x 102 (9.33 +£0.22 £0.23) x 10~
24.6-25.9 252405 (1.11 £ 0.01 £0.03) x 1072 (7.88 £0.19 £ 0.20) x 107*
25.9-27.2 26.6 £ 0.5 (9.42 4+ 0.06 +0.23) x 1073 (6.6340.17 £0.17) x 107#
27.2-28.7 28.0+0.6 (7.94 4 0.05 +0.20) x 1073 (5.9440.16 £0.15) x 107*
28.7-30.2 29.4 £ 0.6 (6.74 £0.05+£0.17) x 1073 (520 £0.14 £0.13) x 107*
30.2-31.8 31.0+0.6 (5.62+0.04 £0.14) x 1073 (4334+0.12£0.11) x 107*
31.8-33.5 327407 (4.73 +£0.04 +0.12) x 107 (376 +£0.11 +0.10) x 10~*
33.5-35.4 344 £0.7 (3.92 4+ 0.03 £0.10) x 1073 (3.204+0.10 £0.08) x 107#
35.4-37.3 36.3£0.7 (3.37 +0.03 £0.09) x 1073 (2.69 4-0.09 £+ 0.07) x 107#
37.3-39.4 38.3£0.8 (2.83 +0.03 £0.07) x 1073 (2.4340.08 £0.07) x 107*
39.4-41.6 40.5+0.8 (2.34 4+0.02 £ 0.06) x 1073 (2.11 4+ 0.07 £0.06) x 107*
41.6-44.0 428=£0.9 (2.01 £0.02 £0.05) x 1073 (1.70 4 0.06 £ 0.05) x 10~*
44.0-46.6 453+£09 (1.63 4+ 0.02 £ 0.04) x 1073 (1.56 4 0.06 £ 0.04) x 10~
46.6-49.3 479+1.0 (1.38 4 0.02 £ 0.04) x 1073 (1.2240.05 £0.03) x 107#
49.3-52.3 50.8 £1.0 (1.14 4+ 0.01 £0.03) x 1073 (1.08 4+ 0.05 £0.03) x 107#
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TABLE 1. (Continued)

Energy (GeV) E (GeV) D, £ Oy £ Oy D, £ Oy £ Oy
52.3-55.6 539+ 1.1 (9.35+£0.12 £ 0.26) x 10~ (9.37 £ 0.42 £0.27) x 1075
55.6-59.1 573+ 1.1 (7.61 £0.10 £0.21) x 107 (7.55 +£0.36 £ 0.22) x 1075
59.1-63.0 61.0+1.2 (6.32+£0.09 £ 0.18) x 10~ (6.53 £0.324£0.19) x 1075
63.0-67.3 65.141.3 (5.05+0.08 £ 0.14) x 10~ (541 £0.28 £0.16) x 1075
67.3-72.0 69.6+ 1.4 (3.9240.07 £0.11) x 10~ (478 £0.25 £ 0.14) x 1075
72.0-77.4 746+ 1.5 (3.26 + 0.06 = 0.10) x 10~ (3.89 +0.21 £0.12) x 1073
77.4-83.4 80.3 + 1.6 (2.54 +£0.05 £ 0.08) x 10~ (2.88 4+ 0.17 £ 0.09) x 1073
83.4-90.2 86.7 1.7 (2.03 £ 0.04 £ 0.06) x 10~ (2.76 4 0.16 £ 0.09) x 1073
90.2-98.1 940+ 1.9 (1.56 + 0.03 £ 0.05) x 10~ (2.08 £ 0.13 £0.07) x 107
98.1-107 103 +2 (1.23 +£0.03 £0.04) x 10~ (1.53 £0.10 £ 0.06) x 1075
107-118 113+2 (9.0240.21 £0.31) x 1073 (1.15 £ 0.08 £ 0.04) x 1075
118-132 12543 (6.59 +£0.16 £ 0.23) x 1075 (8.56 £ 0.66 & 0.33) x 10~
132-149 140 43 (4324 0.12£0.16) x 1075 (6.21 £ 0.53 £0.25) x 10~
149170 159 +3 (3.0240.09 £0.11) x 1073 (523 £0.45 £0.22) x 107
170-198 183+ 4 (1.93 +0.07 £ 0.07) x 1073 (3.1940.32£0.14) x 1070
198-237 216 + 4 (1.11 £ 0.04 £ 0.05) x 1075 (2.08 +0.23 £ 0.10) x 10~
237-290 262+5 (6.64 +0.31 £0.31) x 1076 (121 £0.17 £0.07) x 10~
290-370 32747 (3.1540.19 £ 0.19) x 107° (6.17 £ 1.20 + 0.38) x 1077
370-500 429 4 13 (1.21 4+ 0.10 £ 0.09) x 10~° (2.47 £ 0.73 £0.22) x 1077
500-700 589 4+ 22 (4.53 £ 0.64 +0.70) x 10~

positrons is affected by solar modulation as seen in our data
by variations of the fluxes over this data-taking interval.
However, above ~20 GeV the effects of solar modulation
are insignificant within the current experimental accuracy.
The data show that above ~20 GeV and up to 200 GeV
the electron flux decreases more rapidly with energy than
the positron flux, that is, the electron flux is softer than the
positron flux. This is not consistent with only the secondary
production of positrons [15].

As seen in Figs. 1 and 2, neither the electron flux nor
the positron flux can be described by single power laws
(x E7) over the entire range. To estimate a lower energy
limit above which a single power law describes the positron
flux, we use energy intervals with starting energies from
0.5 GeV and increasing bin by bin. The ending energy for
all intervals is fixed at 500 GeV. Each interval is split into
two sections with a boundary between the starting energy
and 500 GeV. Each of the two sections is fit with a single
power law and we obtain two spectral indices. The lowest
starting energy of the interval that gives consistent spectral
indices at the 90% C.L. for any boundary defines the lower
limit. This yields 27.2 GeV for positrons. Similarly, starting
from 0.5 GeV and ending at 700 GeV yields a lower limit of
52.3 GeV for electrons.

To quantitatively examine the energy dependence of the
fluxes in a model-independent way, each of them is fit with
a spectral index y,+ as

= C,+E'* or +)]/d[log(E)]

(3)

®,-(E) Ver = d[log(®,

(E in GeV and C,= are normalizations) over a sliding
energy window, where the width of the window varies
with energy to have sufficient sensitivity to determine the
spectral index. The resulting energy dependencies of
the fitted spectral indices are shown in Fig. 3, where the
shading indicates the correlation between neighboring
points due to the sliding energy window. The steep
softening of the spectral indices below 10 GeV is due to
solar modulation. Above 20 GeV, that is, above the effects
of solar modulation, the spectral indices for positrons
and electrons are significantly different. From 20 to
200 GeV, y,+ is significantly harder than y,-. This dem-
onstrates that the increase with energy observed in the
positron fraction is due to the hardening of positron
spectrum and not to the softening of the electron spectrum
above 10 GeV.

Figure 3 indicates the possible existence of structures in
7.~ and y,-. Explicitly, single power-law fits over different
energy ranges show that y,+ hardens from —2.97 4 0.03
(fit over 15.1-31.8 GeV) to —2.75 £ 0.05 (fit over 49.3—
198 GeV). Correspondingly, y.- hardens from —3.28 +
0.03 (fit over 19.0-31.8 GeV) to —3.15 +0.04 (fit over
83.4-290 GeV) and then levels off. Note that the quoted
values of the spectral indices correspond to fits from
nonoverlapping ranges and are not correlated. Above
~200 GeV, 7, exhibits a tendency to soften with energy.
This is consistent with our observation in Ref. [2] that
above ~200 GeV the positron fraction is no longer increas-
ing with energy.

These measurements of the electron flux and positron
flux make possible the accurate comparison with various
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Energy [GeV]

FIG. 1 (color). The AMS (a) electron and (b) positron fluxes,
multiplied by E®. Statistical and systematic uncertainties of the
AMS results have been added in quadrature. Also shown are

the most recent measurements from PAMELA [9] and
Fermi-LAT [10].

astrophysical models including the minimal model dis-
cussed in Refs. [1,2]. This will be presented in a separate
publication.

The differing behavior of the spectral indices versus
energy indicates that high-energy positrons have a
different origin from that of electrons. The underlying
mechanism of this behavior can only be ascertained
by continuing to collect data up to the TeV region
(currently, the largest uncertainties above ~200 GeV are
the statistical errors) and by measuring the antiproton to
proton ratio to high energies. These are among the main
goals of AMS.

In conclusion, the electron flux and the positron flux
each require a description beyond a single power-law
spectrum. Both the electron flux and the positron flux
change their behavior at ~30 GeV, but the fluxes are
significantly different in their magnitude and energy
dependence. Between 20 and 200 GeV, the positron
spectral index is significantly harder than the electron
spectral index. These precise measurements show that
the rise in the positron fraction is due to the hardening
of the positron spectrum and not to the softening of the
electron spectrum above 10 GeV. The determination
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FIG. 2 (color). Detailed AMS (a) electron and (b) positron
fluxes, multiplied by E°, up to 200 GeV, with earlier measure-
ments by PAMELA [9], Fermi-LAT [10], MASS [11], CAPRICE
[12], AMS-01 [13], and HEAT [14].

of the differing behavior of the spectral indices versus
energy is a new observation and provides important
information on the origins of cosmic-ray electrons and
positrons.
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FIG. 3 (color). The spectral indices of the electron flux y,.- and
of the positron flux y,+ as a function of energy. The shaded
regions indicate the 68% C.L. intervals including the correlation
between neighboring points due to the sliding energy window.
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