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We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class
of random lattices whose disorder fluctuations decay much faster with increasing length scale than those
of generic random systems, yielding a wandering exponent of ω ¼ ðd − 1Þ=ð2dÞ in d dimensions. The
stability of clean critical points is thus governed by the criterion ðdþ 1Þν > 2 rather than the usual Harris
criterion dν > 2, making topological disorder less relevant than generic randomness. The Imry-Ma
criterion is also modified, allowing first-order transitions to survive in all dimensions d > 1. These results
explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase
transitions on random lattices. We discuss applications, and we illustrate our theory by computer
simulations of random Voronoi and other lattices.
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Two of the central results on phase transitions in
disordered systems are the Harris and Imry-Ma criteria.
The Harris criterion [1] governs the stability of critical
points against disorder. If the correlation length exponent ν
of a d-dimensional clean system fulfills the inequality
dν > 2, weak disorder is irrelevant and does not change
the critical behavior. If dν < 2, disorder is relevant, and the
character of the transition must change [2]. The Imry-Ma
criterion [3] governs the stability of macroscopic phase
coexistence: Disorder destroys phase coexistence by
domain formation in dimensions d ≤ 2 [4]. As a conse-
quence, disorder rounds first-order phase transitions in
d ≤ 2. The predictions of these criteria and their general-
izations to long-range correlated disorder [5,6] agree with
the vast majority of explicit results on classical, quantum,
and nonequilibrium systems in which the disorder stems
from random coupling strengths or spatial dilution.
Puzzling results have been reported, however, on phase

transitions in topologically disordered systems, i.e., sys-
tems on lattices with random connectivity. For example, the
Ising magnet on a three-dimensional (3D) random Voronoi
lattice displays the same critical behavior as the Ising model
on a cubic lattice [7,8] even though Harris’ inequality is
violated. An analogous violation was found for the three-
state Potts model on a 2D random Voronoi lattice [9]. The
regular 2D eight-state Potts model features a first-order
phase transition. In contrast to the prediction of the Imry-Ma
criterion, the transition remains of first order on a random
Voronoi lattice [10].
The nonequilibrium transition of the contact process

features an even more striking discrepancy. This system
violates Harris’ inequality [11]. Disorder introduced via
dilution or random transition rates results in an infinite-
randomness critical point and strong Griffiths singularities
[12,13]. In contrast, the contact process on a 2D random

Voronoi lattice shows clean critical behavior and no trace
of the exotic strong-randomness physics [14].
To explain the unexpected failures of the Harris and

Imry-Ma criteria, several authors suggested that, perhaps,
the existing results are not in the asymptotic regime. Thus,
much larger systems would be necessary to observe the
true asymptotic behavior which, presumably, agrees with
the Harris and Imry-Ma criteria. However, given the large
systems employed in some of the cited work, this would
imply enormous crossover lengths which do not appear
likely because the coordination number fluctuations of the
Voronoi lattice are not particularly small [15]. What, then,
causes the failure of the Harris and Imry-Ma criteria on
random Voronoi lattices?
In this Letter, we show that 2D random Voronoi lattices

belong to a broad class of random lattices whose disorder
fluctuations feature strong anticorrelations and thus decay
qualitatively faster with increasing length scale than those
of generic random systems. This class comprises lattices
whose total coordination (total number of bonds) does not
fluctuate. Such lattices are particularly prevalent in two
dimensions because the Euler equation of a 2D graph
imposes a topological constraint on the coordination num-
bers. However, higher-dimensional realizations exist as
well. The suppressed disorder fluctuations lead to an impor-
tant modification of the Harris criterion: The random con-
nectivity is irrelevant at clean critical points if ðdþ 1Þν > 2.
Topological disorder is thus less relevant than generic
randomness. The Imry-Ma criterion is modified as well,
allowing first-order transitions to survive in all dimensions
d > 1. This explains the puzzling literature results on 2D
random Voronoi lattices mentioned above. In the rest of this
Letter, we sketch the derivation of these results and illustrate
them by simulations.
Random lattice or cell structures occur in many areas of

physics, chemistry, and biology such as amorphous solids,
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foams, and biological tissue. Consider a many-particle
system on such a random lattice, e.g., a classical or quantum
spin system, lattice bosons, or a nonequilibrium problem
such as the contact process. In all these examples, the
disorder of the many-particle system stems from the random
connectivity of the underlying lattice. In the following,
we therefore analyze the fluctuations of the coordination
number qi (the number of nearest neighbors of site i) for
different random lattices, starting with the 2D random
Voronoi lattice (Fig. 1).
The Voronoi-Delaunay construction is an algorithm for

building a cell network from a set of lattice sites [16]. The
Voronoi cell of a site consists of all points in the plane that
are closer to this site than to any other. Sites whose Voronoi
cells share an edge are considered neighbors. The graph of
all bonds connecting pairs of neighbors defines a triangu-
lation of the plane called the Delaunay triangulation.
Our simulations start by performing the Voronoi-Delaunay
construction [17] for N points placed at independent
random positions within a square of side L ¼ N1=2 (density
fixed at unity). To study the coordination number fluctua-
tions, we divide the system into square blocks of side Lb
and calculate the block-averaged coordination number

Qμ ¼ N−1
b;μ

X
i∈μ

qi ð1Þ

for each block. Nb;μ is the number of sites in block μ, and
the sum runs over all these sites. The relevant quantity is the
standard deviation σQ of the block-averaged coordination
numbers defined by

σ2QðLbÞ ¼ ½ðQμ − q̄Þ2�μ; ð2Þ

where ½…�μ denotes the average over all blocks μ, and q̄ is
the global average coordination number of the lattice.
Figure 2 compares the fluctuations in a random Voronoi

lattice and a bond-diluted square lattice (both with periodic
boundary conditions). In the diluted lattice, the fluctua-
tions accurately follow σQ ∼ L−d=2

b ¼ L−1
b , as expected

for uncorrelated disorder. In contrast, the fluctuations in
the Voronoi lattice decay faster and follow σQ ∼ L−3=2

b . An
illustration of the suppressed fluctuations in the Voronoi
lattice is shown in Fig. 1.
In addition to real-space blocks, we also study clusters

based on the link distance, the smallest number of bonds
(links) that separate two sites. To construct such clusters,
we start from a random seed site and add its neighbors,
neighbors of neighbors and so on until we reach a maximum
link distance dl. This construction introduces a bias towards
large qi (as sites with more neighbors are more likely to be
added to the cluster). Thus, the cluster average ½Q�μ is larger
than the global average q̄ ¼ 6; see inset of Fig. 2. The excess
decays only slowly with cluster size, ð½Q�μ − 6Þ ∼ d−1l . For
the link-distance clusters we therefore use σ2QðdlÞ ¼
½ðQμ − ½Q�μÞ2�μ rather than Eq. (2). The resulting data,
also shown in Fig. 2, demonstrate that the fluctuations of
the link-distance clusters decay with the same power,
σQ ∼ d−3=2l , as those of the real-space blocks. Had we not
corrected for the size dependence of ½Q�μ, we would have
obtained a spurious decay exponent of (−1) [18].
How can we understand the rapidly decaying disorder

fluctuations? The Euler equation of a 2D graph consisting
of N sites, E edges (nearest-neighbor bonds), and F facets
reads N − Eþ F ¼ χ. Here, χ is the Euler characteristic, a

FIG. 1 (color online). Top row: coordination numbers qi of
individual sites in a random Voronoi lattice (left) and a diluted
hexagonal lattice (right). Bottom row: average coordination
number Qμ of blocks with Lb ¼ 8. The strong suppression of
the fluctuations in the Voronoi lattice is clearly visible. [The same
color (gray) scale is used left and right].
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FIG. 2 (color online). Standard deviation σQ of the average
coordination number ½Q�μ of blocks of size Lb for a random
Voronoi lattice and a square lattice with 50% bond dilution (100
lattices with 50002 sites each). The lines are fits to σQ ∼ L−a

b ,
giving exponents a ¼ 1.001ð2Þ (diluted) and 1.501(3) (Voronoi).
Also shown is σQ for clusters defined via the link distance dl
(100 lattices with 20002 sites) giving a ¼ 1.52ð2Þ. Inset: ½Q�μ and
½Q�μ − q̄ of the link-distance clusters vs dl. The line is a fit to
ð½Q�μ − q̄Þ ∼ d−bl yielding b ¼ 0.99ð1Þ.
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topological invariant of the underlying surface. Periodic
boundary conditions are equivalent to a torus topology,
yielding χ ¼ 0 [19]. Every facet of a Delaunay triangula-
tion is a triangle. As each triangle has three edges, and each
edge is shared by two triangles, 3F ¼ 2E. This implies
E ¼ 3N; i.e., the total coordination does not fluctuate, and
the average coordination number is q̄ ¼ 2E=N ¼ 6 for any
disorder realization. (This also follows from the angle sum
in any triangle being π: As each site has a total angle of 2π,
6 triangles meet at a site on average.) Now consider a block
of size Lb as introduced above. The relation 3F ¼ 2E holds
for all triangles and edges completely inside the block.
Any deviation of the block-averaged coordination number
Qμ from q̄ ¼ 6 must thus stem from the block surface.
The number of facets crossing the surface scales linearly
with Lb. Assuming that each of these facets makes an inde-
pendent random contribution to Qμ leads to the estimate
σQðLbÞ ∼ L1=2

b =L2
b ¼ L−3=2

b , in perfect agreement with the
numerical data.
To substantiate these arguments, we study the coordi-

nation number correlation function

CðrÞ ¼ 1

N

X
ij

ðqi − q̄Þðqj − q̄Þδðr − rijÞ; ð3Þ

where rij is the vector from site i to j. Its integral over a
block of radius r yields the bulk contribution to the
fluctuations of the average coordination number

σ2Q; bulkðrÞ ¼ DðrÞ ¼ 2π

Nr

Z
r

0

dr0r0Cðr0Þ; ð4Þ

where Nr is the number of sites in the block. The data
presented in Fig. 3 show that jCðrÞj decays faster than
exponential with distance r. Its integral DðrÞ also decays
rapidly to zero, confirming that the total coordination is not
fluctuating. The topological constraint imposed by the

Euler equation thus leads to strong coordination number
anticorrelations that are fully established within 5 or 6
typical nearest-neighbor distances.
How general are these results? Are they restricted to

2D random Voronoi lattices or do they apply to other
lattices as well? The fixed total coordination is a direct
consequence of the Euler equation N − Eþ F ¼ χ and the
triangle condition 3F ¼ 2E. It thus applies to any tiling of
the plane with triangles. Analogously, if we tile the plane
with arbitrary quadrilaterals, 4F ¼ 2E. This yields a fixed
average coordination number of precisely q̄ ¼ 2E=N ¼ 4.
We have thus identified a broad class of 2D lattices in
which the coordination fluctuations are suppressed because
the total coordination is constrained. In addition to random
Voronoi lattices it includes, e.g., regular lattices with
bond-exchange defects which are related to the topological
models of Le Caër [20]. It also includes deterministic
quasiperiodic lattices such as the Penrose and Ammann-
Beenker tilings [21] (using rhombic tiles) as well as
random tilings [22] whose tiles are either all triangles or
all quadrilaterals.
What about higher dimensions? The Euler equation

for a 3D tessellation, N − Eþ F − C ¼ χ, contains 1 extra
degree of freedom, viz., the number C of 3D cells. The total
coordination of a random tetrahedralization is therefore not
fixed by a topological constraint, in agreement with the fact
that the solid-angle sum in a tetrahedron is not a constant.
Consequently, 3D random Voronoi lattices do not belong to
our class of lattices with a constrained total coordination.
However, 3D members of our class do exist. They include,
e.g., lattices built exclusively from rhombohedra such as
the icosahedral tiling and its random variants [23] (the solid
angle sum of a rhombohedron is fixed at 4π), as well as
generalizations of the bond-exchange lattices to 3D.
We now generalize to arbitrary dimension our estimate of

the fluctuations of the block-averaged coordination num-
ber. As the bulk contribution is suppressed by the anti-
correlations, the main contribution stems from the surface.
The number of cells or facets close to the surface scales as
Ld−1
b with block size Lb. In the generic case, i.e., in the

absence of further constraints or long-range correlations,
these surface cells make independent random contributions
to Qμ. This leads to

σQðLbÞ ∼ Lðd−1Þ=2
b =Ld

b ¼ L−ðdþ1Þ=2
b : ð5Þ

Casting this result in terms of the wandering exponent ω

defined via σQ∼L−dð1−ωÞ
b [24], we obtainω¼ðd−1Þ=ð2dÞ.

This needs to be compared to uncorrelated randomness for
which σQ ∼ L−d=2

b and ω ¼ 1=2.
We have verified the prediction (5) for several lattices in

addition to the 2D Voronoi lattice. The first is a random
lattice produced from a triangular lattice by performing
random bond exchanges. A bond exchange (left inset of
Fig. 4) consists of randomly choosing a rhombus made up
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FIG. 3 (color online). Coordination number correlation func-
tion CðrÞ and its integral DðrÞ vs distance r averaged over 107

lattices of 242 sites. Inset: Semi-log plot of jCðrÞj and jDðrÞj. The
envelope of CðrÞ follows a Gaussian with a characteristic length
x0 ≈ 1.25 (dashed line).

PRL 113, 120602 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

19 SEPTEMBER 2014

120602-3



of two adjacent triangles and replacing the short diagonal
(dotted) with the long one (solid). The second example is
the deterministic quasiperiodic Ammann-Beenker tiling. For
both lattices, the numerical data (Fig. 4) follow σQðLbÞ ∼
L−3=2
b in agreement with (5) [25]. Finally, we have studied

a 3D rhombohedral lattice with bond-exchange defects.
The numerical data are in excellent agreement with the
prediction σQðLbÞ ∼ L−2

b .
We now use these results to derive the analog of the

Harris criterion for many-particle systems on random
lattices in our class. Following Harris and Luck [1,24],
we compare the fluctuations of the local distance from
criticality between correlation volumes with the global
distance from criticality. If the interactions between the
sites are restricted to nearest neighbors and of equal
strength, the disorder fluctuations are governed by (5)
and decay as ξ−ðdþ1Þ=2 with correlation length ξ. The global
distance from criticality scales as ξ−1=ν. A clean critical
point is thus stable if ξ−ðdþ1Þ=2 < ξ−1=ν for ξ → ∞. This
yields the stability (Harris-Luck) criterion ðdþ 1Þν > 2.
The topological disorder is thus less relevant than generic
uncorrelated randomness for which the Harris criterion
reads dν > 2.
The Imry-Ma criterion compares the free energy gain

due to forming a domain that takes advantage of a disorder
fluctuation with the energy cost of the domain wall. In

our class of lattices, the gain scales as Ldω
b ¼ Lðd−1Þ=2

b while
the cost of a domain wall scales as Ld−1

b . Forming large
domains is thus unfavorable in all dimensions d > 1,
implying that first-order transitions can survive.
The coordination number fluctuations determine the

bare (in the renormalization group sense) disorder of the
many-particle system. To study an example of disorder
renormalizations, we calculate the local critical

temperatures Tc of the Ising model, H ¼ −J
P

hijiSiSj,
on a random Voronoi lattice by Monte Carlo simulations.
The right panel of Fig. 4 shows the variance of the block
Tc (defined as the maximum of the susceptibility) as a
function of block size. The data follow σðTcÞ ∼ L−3=2

b in
agreement with the coordination number. In general,
disorder renormalizations can be expected to generate
weak uncorrelated disorder even if the bare disorder is
anticorrelated [26]. Our results suggest that this uncorre-
lated disorder, if any, is very weak (as it is invisible on
length scales below Lb ≈ 100) and thus unobservable in
most experiments and simulations.
In summary, we have studied the effects of topological

disorder on phase transitions. We have identified a broad
class of random lattices characterized by strong disorder
anticorrelations. Such lattices are ubiquitous in two dimen-
sions because the Euler equation imposes a topological
constraint on the coordination numbers. However, we have
also found higher-dimensional realizations. The anticorre-
lations lead to modifications of the Harris and Imry-Ma
criteria. This explains most of the puzzling apparent fail-
ures of the usual criteria discussed in the introduction. Note
that another type of anticorrelation was recently found to
protect a clean critical point in a quantum spin chain [27].
Moreover, local disorder correlations that change the
degree of frustration in a spin glass can qualitatively
change its phase diagram [28].
Interestingly, the 3D random Voronoi lattice does not

belong to our class of lattices with constraint total co-
ordination. Preliminary numerical results suggest that its
coordination number fluctuations decay more slowly than
(5) but still faster than the uncorrelated randomness result
L−d=2
b , at least for blocks with Lb < 400. Further work

will be necessary to understand the fate of phase transitions
on 3D Voronoi lattices.
So far, we have considered systems in which all pairs

of neighbors interact equally strongly. If this is not so, e.g.,
because the interactions depend on the distance between
neighboring sites, the disorder anticorrelations are
destroyed. The critical behavior is thus expected to cross
over to that of uncorrelated disorder. We have explicitly
observed this crossover in the contact process [29].
It will be interesting to study transitions that violate

even the modified stability criterion ðdþ 1Þν > 2. A prime
example is the quantum phase transition of the transverse-
field Ising magnet on a 2D random Voronoi lattice. Its
clean critical behavior is in the ð2þ 1ÞD Ising universality
class with ν ≈ 0.630 and thus violates ðdþ 1Þν > 2. As the
anticorrelations strongly suppress the rare region proba-
bility [29], we also expect significant modifications of the
quantum Griffiths singularities.
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FIG. 4 (color online). Left: σQ vs Lb for the Ammann-Beenker
tiling (8th generation, 643 008 4 sites, triangles), a triangular lattice
with 50% bond-exchange defects (100 lattices with 20002 sites,
circles), and a rhombohedral lattice with 50% bond-exchange
defects (100 lattices with 3003 sites, open squares). The lines are
power-law fits giving exponents of 1.51(3), 1.498(2), and 2.01(1),
respectively. Right: σ2ðTcÞ vs Lb for an Ising model on a random
Voronoi lattice (100 lattices of 1002 sites, 105 Monte Carlo sweeps
each). The line is a fit to σðTcÞ ∼ L−c

b giving c ¼ 1.56ð7Þ.
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