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We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops.
The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer,
whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding,
whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop
coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson
sampling. The architecture employs only a single point of interference and may thus be easier to stabilize
than other approaches. The scheme has polynomial complexity and could be realized using demonstrated
present-day technologies.
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Boson sampling, first presented by Aaronson and
Arkhipov (AA) [1], is a nonuniversal approach to linear
optics quantum computing (LOQC) [2,3]. While not
universal, boson sampling is believed to implement a
classically hard algorithm using far fewer physical resour-
ces than full LOQC. In this model we prepare p single
photons in n modes, which are propagated through a
passive linear optics network Û. Finally, we measure the
output state using coincidence photodetection. The experi-
ment is repeated many times, thereby building up statistics
of the output photon-number distribution. This sampling
problem was shown by AA to likely be a classically hard
problem and might only require dozens of photons and
hundreds of optical elements, which is a significant
improvement over universal LOQC. Several elementary
experimental demonstrations of boson sampling have
recently been performed [4–8]. For a more detailed
elementary introduction to boson sampling see Ref. [9].
Presently, various technologies are available for prepar-

ing single photon states (e.g., spontaneous parametric
down-conversion, which has been shown to be viable for
boson sampling [10,11]), and performing photodetection
(e.g., avalanche photodiodes). The remaining central chal-
lenge in boson sampling is constructing linear optics
networks Û. It was shown by Reck et al. [12] that arbitrary
n-mode linear optics networks can be decomposed into a
sequence of Oðn2Þ beam splitters. In present-day experi-
ments this type of decomposition is implemented using
waveguides or discrete optical elements.
In current implementations, the modes in a boson-

sampling interferometer are spatial modes, whereby all
photons must have simultaneous arrival times. Another
alternative is to employ time-bin encoding, whereby n
single photons form a “pulse train” within a single spatial

mode. In the architecture we present here, we will employ
time-bin encoding.
We begin by triggering a single photon source at time

intervals τ (the source’s repetition rate), which prepares a
pulse train of n single photons across a length of fiber. The
first step in our architecture is to propagate the pulse train
through a fiber loop with dynamically controlled coupling
ratios, as shown in Fig. 1(a). The loop’s coupling ratio is
dynamically controlled by a variable reflectivity beam
splitter, implementing the unitary,

UBSðtÞ ¼
�
γ1;1ðtÞ γ1;2ðtÞ
γ2;1ðtÞ γ2;2ðtÞ

�
; ð1Þ

(b)

(a)

FIG. 1. (a) A fiber loop fed by a pulse train of single photons,
each separated in time by τ. The box represents a dynamically
controlled, variable reflectivity beam splitter (BS). The switching
time of the beam splitter must be less than τ to allow each time bin
to be individually addressed. (b) Expansion of the fiber loop
architecture into its equivalent beam splitter network.
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at time t, which splits the incident field into a component
entering the loop and a component exiting the loop. The
component entering the loop takes time τ to transverse
the loop such that it coincides with the subsequent pulse.
In order for the first photon to interfere with every photon
pulse it will traverse this loop n times. The second photon
will traverse the loop n − 1 times and so on. The dynamics
of photons propagating through the loop architecture may
be “unravelled” into an equivalent series of beam splitters
acting on spatial modes, as shown in Fig. 1(b). This
elementary network is the basic building block employed
by our architecture.
The effective unitary map applied to the time bins

through a single such loop is

Ui;j ¼

8>><
>>:

0 i > jþ 1

γ2;1ðiÞ i ¼ jþ 1

γ2;2ðiÞγ1;1ðjþ 1ÞQj
k¼iþ1 γ1;2ðkÞ i < jþ 1

;

ð2Þ

where i and j represent the input and output modes,
respectively. Here we have imposed the boundary condition
that UBSð1Þ and UBSðnþ 1Þ are completely reflective,
coupling all of the first photon into the loop, and ensuring
that all of the field remains trapped in a finite time window.
We see that the probability of finding a photon in the jth
mode decays exponentially with j.
Evidently, the network shown in Fig. 1(b) is not

sufficient for universal linear optics networks as it contains
many zero elements. To make the scheme universal we
must show that the ingredients necessary to perform a full
Reck et al. type decomposition are available.
To understand the equivalent beam splitter representation

of a single loop, consider Fig. 2(a). The pulse train enters
the loop, where the numbers on the left represent the
corresponding time bin. The first photon is deterministi-
cally coupled into the loop as depicted by an open circle.
After the first and second photons interact some of the
amplitude may escape the loop, which corresponds to the
first output time bin. The pulse train continues to interact
through the loop via beam splitter operations, which are
represented as closed circles. After the nth photon trans-
verses the loop any remaining amplitude deterministically
leaves the loop, which corresponds to the nth output
time bin.
Now consider Fig. 2(b), which depicts how three

consecutive loops in series with three input photons
produce an equivalent beam splitter network. The lengths
of the black lines represent time in units of τ. The three
modes on the left represent the pulse train of photons at the
input of the device at the first round-trip. The first photon
reaches the first beam splitter at τ ¼ 1, the second photon
reaches it at τ ¼ 2, and so on. The photons travel through
the fiber loop network interacting arbitrarily, which yields

an arbitrary Reck et al. style decomposition. Evidently, an
n-mode unitary can be built using nmodes and n − 1 loops.
In Figs. 3 and 4 we show an alternate proof based on an
inductive argument.
We have shown that a series of consecutive fiber loops

can implement an arbitrary sequence of pairwise beam
splitter operations. Next, we recognize that each of these
fiber loops requires exactly the same physical resources,
only differing by the switch’s control sequence. We need
not physically build each of these identical loops. Rather,
we will embed the loop into a larger fiber loop of length
>nτ, as shown in Fig. 5. The larger loop is controlled by
another two switches, which control the number of round
trips in the larger loop. From the result of Reck et al. we
know that Oðn2Þ optical elements are required to construct
an arbitrary n × n interferometer. Thus, the number of
round trips of the outer loop is Oðn2Þ.
An experimental simplification is when we do not

require full dynamic control over the beam splitter ratio.
Although this scenario is not universal, it may be possible
to construct useful classes of unitaries. We will consider the
situation where the beam splitter can be toggled between
two settings—completely reflective, or some other arbitrary
fixed ratio. The former is required to allow that the time

(a)

(b)

FIG. 2 (color online). The equivalent beam splitter representa-
tion for the fiber loop architecture. (a) A single loop is represented
for n photons in the pulse train. (b) The equivalent beam splitter
network of three consecutive loops with three input modes.
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bins be restricted to a finite time window, while the latter
implements the “useful” beam splitter operations. We may
have an arbitrary number of such loops in series, each with
a potentially different fixed beam splitter ratio.
Intuitively, we expect that a “maximally mixing” unitary

(i.e., one with equal amplitudes between every input to
output pair) would implement a classically hard boson-
sampling instance, as it maximizes the combinatorics asso-
ciated with calculating output amplitudes. If, for example,
a unitary is heavily biased towards certain output modes, or
is sparse, the combinatorics are reduced. Specifically, we
define a balanced unitary as jU0

i;jj2 ¼ 1=n∀i; j, such that, up
to phase, all amplitudes are equal.
In Fig. 6 we take the unitary implemented by a series of

m fixed-ratio fiber loops, and compare it with the balanced
unitary Û0. We characterize the uniformity of the obtained
unitary using the similarity metric,

S ¼ max
ÛBSðtÞ∀t

2
4
�P

i;j
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where we maximize S by performing a Monte Carlo
simulation over different beam splitter ratios, ÛBS. That
is, S tells us how close Û is to uniform, with S ¼ 1 being
completely uniform up to phase. With a sufficient number
of loops in series, we obtain very high similarities,
suggesting that the simplified architecture may implement
hard instances of boson sampling.
The presented universal architecture is in principle

arbitrarily scalable, provided the length of the larger loop
is sufficiently high (> nτ). However, in practice, fiber is
lossy with present-day technology. If we let ηinner be the net
efficiency of the inner loop (i.e., the probability that an
incident photon will reach the output), and ηouter be the net
efficiency of the outer loop, then the worst case net
efficiency of the device is ηnet ¼ ðηinnernηouterÞOðn2Þ, which
scales exponentially with n. Thus, to construct large
interferometers using this architecture will require

(a)

(b)

(c)

(d)

(e)

FIG. 3 (color online). (a) Two consecutive fiber loops in series.
(b) The equivalent beam splitter expansion for n ¼ 3. By setting
the beam splitter ratios appropriately the two loops can imple-
ment an arbitrary beam splitter between any pair of modes:
(c) modes 1 and 2, (d) modes 1 and 3, (e) modes 2 and 3.

FIG. 4. Generalizing the universality argument presented in
Fig. 3 to arbitrary n. We choose a permutation that the first of the
desired modes be routed to the beam splitter, which interacts with
mode nþ 1. Then the inverse permutation is applied, leaving us
with a network that implements an arbitrary beam splitter
operation between one of the first n modes and the ðnþ 1Þth
mode. It follows inductively that an arbitrary beam splitter
operation can be applied between any pair of modes for any n.

FIG. 5. The complete architecture. The consecutive series of
length τ fiber loops is collapsed into a single length τ fiber
loop embedded inside a length > nτ fiber loop. The outer loop
allows an arbitrary number of the smaller loops to be applied
consecutively.
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exponentially low loss rates. This is also the case for
conventional spatially encoded implementations. However,
it was shown by Rohde and Ralph [13] that boson sampling
might remain a computationally hard problem even in the
presence of high loss rates. Other error models, such as
dephasing or mode-mismatch [14], exhibit similar scaling
characteristics.
Our architecture has the same efficiency scaling as

conventional bulk-optics or waveguide implementations.
If the worst-case photon efficiency (combining state prepa-
ration, evolution, and photodetection) is ζ, then with n
photons the net efficiency is lower bounded by ζn.
Because there is only a single point of interference, this

architecture may be significantly easier to stabilize and
mode match than conventional approaches, where Oðn2Þ
independent beam splitters must be simultaneously aligned
and stabilized. At this point of interference, the dominant
source of error will be temporal mode mismatch [15],
which is caused by errors in the lengths of the fiber loops,
or time jitter in the photon sources. Temporal mismatch
may be regarded as a displacement in the temporal wave
packet of the photons [16]. Let us assume that at each round
trip the photon exiting the inner loop is mismatched by time
Δ. Over short time scales this yields dephasing [17], and
over longer time scales, ambiguity as to which time bin the
photon resides in. The worst case is that a given photon
undergoes temporal mismatch of magnitude nΔ. Time-bin
ambiguity occurs when nΔ ≥ τ, which yields the require-
ment that n < τ=Δ. Over shorter time scales, temporal
mode mismatch is equivalent to dephasing as mismatched
photons yield which-path information. This leads to the
constraint that nΔ ≪ σ, where σ is the width of the
photons’ wave packets. Thus, time jitter or temporal mode
mismatch must be kept small relative to the scale of the
photons’ wave packets. The current switching rates of
state-of-the-art dynamically controlled switches is on the
order of GHz [18–21] and the temporal spacing of photons

is on the order of nanoseconds. While these switches are
fast enough, they require additional coupling that involves
high loss. This will encourage further development of these
type of technologies which is also required for LOQC
architectures.
In principle, the fiber loops could be replaced by any

quantum memory or delay line such as propagation in free
space, which would be significantly less lossy. In this case,
the dominant source of loss would be in the dynamic
switches, which, using present-day technology, have high
loss rates.
Integrated waveguides are gaining popularity in photon-

ics as they are inherently very stable. However, although
interferometrically stable after the fabrication process, there
are nonetheless Oðn2Þ points of interference, which must
be carefully aligned. On the other hand, the fiber-loop
architecture has only a single point of interference that
needs to be aligned. Another advantage of our architecture
is that only one photon source (such as a quantum dot or
SPDC source with high repetition rate) could be employed,
whereas bulk optics or waveguide implementations would
require an array of sources operating in parallel, further
reducing the experimental overhead.
The experimental viability of loop-based photonic archi-

tectures was validated by recent quantum walk [22] experi-
ments by Schreiber et al. [23,24], where quantummemories
were implemented via delay lines in free space. It was also
shown by Donohue et al. [25] that transmitting time-bin
encoded photons in optical fibers is a robust form of optical
quantum information given that the separation of time bins is
larger than the time resolution of the detector. It was pointed
out that the unitarymay be simplified since Boson Sampling
requires only n photons amongstOðn2Þmodes.With a Reck
et al. unitary decomposition and input photons at the apex of
the beamsplitter triangle, a subset of beamsplitters may be
omitted as they have vacuum inputs [26,27].
We have presented an arbitrarily scalable architecture for

universal boson sampling based on two nested fiber loops.
The complexity of the architecture is constant, independent
of the size of the interferometer being implemented.
Scalability is limited only by fiber and switch transmission
efficiencies. There is only one point of interference in the
architecture, which suggests that it may be significantly
easier to stabilize than traditional approaches based on
waveguides or discrete elements. We also considered an
experimental simplification where full dynamic control is
not required and showed that, while not universal, with
sufficient loops the unitary approximates a maximally
mixing unitary. While we have specifically considered this
architecture in the context of boson sampling, the same
scheme, or variations on it, may lend themselves to other
linear optics applications, such as interferometry, metrol-
ogy, or full-fledged LOQC.
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FIG. 6 (color online). The maximum similarity S between Û
and the uniform unitary Û0 after m loops with n input photons.
The beam splitter ratio is fixed for each loop but independently,
randomly chosen for each loop. This demonstrates that near-
uniform unitaries may be constructed with sufficient loops.
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