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We show that a momentum operator of a translational symmetry may not commute with an internal
symmetry operator in the presence of a topological soliton in nonrelativistic theories. As a striking
consequence, there appears a coupled Nambu-Goldstone mode with a quadratic dispersion consisting of
translational and internal zero modes in the vicinity of a domain wall in an O(3) σ model, a magnetic
domain wall in ferromagnets with an easy axis.
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Introduction.—Symmetry is one of the most important
guiding principles in describing nature in quantum physics.
In particular, relativistic quantum field theories rely on
symmetry principle and have been quite successful in
unifying fundamental forces. Gauge symmetries of electro-
magnetic, weak, and strong interactions can be unified to
one group in grand unified theories. However, space-time
symmetry related to gravity could not be, because of the
Coleman-Mandula theorem [1] showing that internal sym-
metry and space-time symmetry must be a direct product
[2]. These are all based on relativistic field theories.
In this Letter, we find a symmetry algebra including both

the space-time symmetry and an internal symmetry in
nonrelativistic field theory,

½P;Θ� ¼ W ≠ 0; ð1Þ
whereP is a translational operator,Θ is an internal symmetry
operator, and W is a “central” extension. We show that the
commutation relation, Eq. (1), is possible in the presence of a
topological soliton in nonrelativistic theories. In a practical
model, the central charge W is a topological charge of a
domain wall [3]. The central charge W vanishes in the
corresponding relativistic model. As a consequence of our
novel algebra, a Nambu-Goldstone (NG) mode for the
translational symmetry (a ripple mode or ripplon if quan-
tized) is coupled to that for the internal U(1) symmetry (a
magnon) when the presence of a domain wall breaks both
the symmetries; They give rise to one NG mode with a
quadratic dispersion relation, although two symmetry gen-
erators are spontaneously broken. This is in contrast to the
corresponding relativistic model, in which these two modes,
ripplon and magnon, appear independently with linear
dispersion relations, which corresponds to the fact that W
vanishes. This phenomenon itself is already known as type-II
or type-B NG modes in nonrelativistic theories [4–8].
However, previously known examples are either NG modes
of both internal symmetries such as ferromagnets or those of

both space-time symmetry such as vortices and lumps
(Skyrmions) [9,10], while our case mixes them together
because of Eq. (1). We derive the dispersion relation in two
approaches: the effective field theory for topological soli-
tons and Bogoliubov theory. We also study a model
interpolating between relativistic and nonrelativistic theories
and find unexpectedly a coupled NG mode in an interpolat-
ing region even though it has the Lorentz invariance.
Models and a domain wall.—We start from the following

relativistic, and nonrelativistic CP1 Lagrangian densities
Lrel and Lnrel with an Ising-type potential,

Lrel ¼
j _uj2 − j∇uj2 −m2juj2

ð1þ juj2Þ2 ;

Lnrel ¼
iðu� _u − _u�uÞ
2ð1þ juj2Þ −

j∇uj2 þm2juj2
ð1þ juj2Þ2 ; ð2Þ

where u ∈ C is the complex projective coordinate defined
as ϕT ¼ ð1; uÞT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj2

p
with normalized two scalar

fields ϕ ¼ ðϕ1;ϕ2ÞT . Lrel and Lnrel are equivalent to O(3)
nonlinear σ models,

Lrel ¼
1

4
fj _nj2 − j∇nj2 −m2ð1 − n23Þg;

Lnrel ¼
_n1n2 − n1 _n2
2ð1þ n3Þ

−
1

4
fj∇nj2 þm2ð1 − n23Þg; ð3Þ

under the Hopf map for a three-vector of scalar fields
n≡ ϕ†σϕ with the Pauli matrices σ. These models describe
ferromagnets with one easy axis.
A Lagrangian density interpolating between Lrel and

Lnrel is given as the following form:

LG ¼ ϕ2
0

� j _uj2
c2ð1þ juj2Þ2 −

j∇uj2
ð1þ juj2Þ2

þ iMðu� _u − _u�uÞ
ℏð1þ juj2Þ −

m2juj2
ð1þ juj2Þ2

�
; ð4Þ
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where ϕ2
0ð> 0Þ is a real positive (decay) constant having the

dimension of ½energy�=½length�. In the following, we omit
ϕ2
0 by measuring LG in the unit of ϕ2

0: LG → ϕ2
0LG. A

detailed derivation of the Lagrangian density LG is dis-
cussed in the Supplemental Material [11]. Lrel is obtained
as the massless limit M → 0 of LG, while Lnrel is the
nonrelativistic limit c → ∞ of LG [12].
The actions S ¼ R

d4xLG are invariant under a global
discrete Z2 transformation: u↔1=u�, a global U(1) phase
rotation: u → ueiα. S is also invariant under the Poincaré
transformation as long as c is positive finite, or the Galilean
transformation in the nonrelativistic limit c → ∞, as shown
in the Supplemental Material [11]. There are two discrete
vacua juj ¼ 0 or juj → ∞, and m > 0 is defined as the
energy gap between them. For these vacua, the Z2

symmetry for the global discrete transformation is sponta-
neously broken. In the framework of the nonlinear σ
models, Eq. (3), the vacua are expressed as n1 ¼ n2 ¼ 0,
n3 ¼ �1, and the last m2ð1 − n23Þ terms are regarded as the
Ising potential.
Dynamics of u can be obtained by the Euler-Lagrange

equation for LG,

ð1þ juj2Þü − 2u� _u2

c2
−
2iMð1þ juj2Þ _u

ℏ
¼ ð1þ juj2Þ∇2u − 2u�ð∇uÞ2 −m2ð1 − juj2Þu: ð5Þ

We next consider a static domain- or antidomain-wall
solution interpolating the two vacua. The flat and static
domain-wall solution perpendicular to the z axis is [13] (see
the Supplemental Material [11])

u0 ¼ expfmðz − ZÞ þ iαg; ð6Þ

where α (0 ≤ α < 2π) and Z ∈ R are phase and transla-
tional moduli of the domain wall. This is known as a
magnetic domain wall in ferromagnets with an easy axis.
In the presence of the domain wall, the H1 ≃ Uð1Þ ×R3

symmetry is further spontaneously broken, where U(1) is
the global symmetry for the internal phase rotation and R3

is the three-dimensional translational symmetry in a space.
The remaining symmetry is H2 ≃ R2

xy, where R2
xy indicates

the translation along the xy plane [14]. Breaking sym-
metriesH1=H2 ≃ Uð1Þ ×Rz due to the domain wall are the
internal U(1) phase rotation and translation along the z
direction, and two moduli α and Z in Eq. (6) are regarded as
corresponding NG modes in the vicinity of the domain
wall. The NG mode α is the phase mode known as a
magnon localized in the domain wall. The other NG mode
for Z is the translational surface mode of the domain wall,
known as a ripple mode, or ripplon if quantized, in
condensed matter physics. In the following, we show that
the localized magnon and ripplon are coupled to each other
to become one “coupled ripplon” mode with fixed
dispersion relation and amplitude.

Low-energy effective theory of a domain wall.—We next
consider the NG modes excited along the domain wall by
constructing the effective theory on a domain wall by the
moduli approximation [15]. Introducing r ¼ ðx; yÞ, and t
dependences of two moduli α and Z as αðr; tÞ and Zðr; tÞ,
we consider the ansatz u as

u ¼ exp½mfz − Zðr; tÞg þ iαðr; tÞ�: ð7Þ

Inserting Eq. (7) to Eq. (4), the effective Lagrangian Leff
G

defined as Leff
G ¼ limL→∞

R
L
−L dzLG becomes

Leff
G ¼ m2ð _Z2=c2 − j∇rZj2Þ þ _α2=c2 − j∇rαj2

2m

þ 2MðZ − LÞ _α
ℏ

−mþ Oð∇3Þ; ð8Þ

up to the quadratic order in derivatives. Here,∇r ¼ ð∂x; ∂yÞ
is the derivative in the xy plane. The constant term m is the
tension (the energy per unit area) of the static flat domain
wall. The case in the massless limit M → 0 was already
obtained before [16].
The low-energy dynamics of Z and α derived from the

Euler-Lagrange equation reads

mZ̈
c2

¼ 2M _α

ℏ
þm∇2

rZ;
α̈

mc2
¼ −

2M _Z
ℏ

þ∇2
rα

m
: ð9Þ

In the massless limit M → 0, the dynamics of Z and α are
independent of each other, giving linear dispersions:

ω ¼ �cjkj; ð10Þ

with the frequencies ω both for Z and α, and the wave
number k ¼ ðkx; kyÞ. Waves for Z and α independently
propagate as a ripplon and a localized magnon in the
vicinity of the domain wall.
As long as M ≠ 0, the dynamics of Z and α couple to

each other. There are four typical solutions of Eq (9),

Z�
1 ¼ A�

1

m
sinðk · r∓ω1tþ δ�1 Þ;

α�1 ¼ �A�
1 cosðk · r∓ω1tþ δ�1 Þ; ð11aÞ

Z�
2 ¼ A�

2

m
sinðk · r� ω2tþ δ�2 Þ;

α�2 ¼ �A�
2 cosðk · r� ω2tþ δ�2 Þ; ð11bÞ

where A�
1;2 ∈ R and δ�1;2 ∈ R are arbitrary constants. Waves

of Z and α couple to each other and propagate as a coupled
ripplon with dispersions
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ω1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c4þℏ2c2k2

p
−Mc2

ℏ
¼ℏk2

2M
þOðk4Þ;

ω2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c4þℏ2c2k2

p
þMc2

ℏ
¼2Mc2

ℏ
þℏk2

2M
þOðk4Þ: ð12Þ

For the solutions of (Z�
1 , α�1 ), the coupled ripplons

propagate in the direction parallel (for þ sign) and
antiparallel (for − sign) to k with a gapless quadratic
dispersion ω1 showing type-II NG modes [17]. Left and
right panels of Fig. 1 show the schematic pictures of
coupled ripplons for (Zþ

1 , α
þ
1 ) and (Z

−
1 , α

−
1 ), respectively. In

contrast to a quantized vortex in superfluids in which a
Kelvin wave is a combination of two translational modes in
real space, the coupled ripplon is a combination of the
translational mode in real space and the phase mode of the
internal degree of freedom. For the solutions of (Z�

2 , α
�
2 ),

on the other hand, the coupled ripplons propagate in the
opposite directions to (Z�

1 , α
�
1 ), respectively, with a gapped

dispersion ω2, and do not behave as NG modes. In the
nonrelativistic limit c → ∞, the gap in ω2 diverges and the
solutions (Z�

2 , α
�
2 ) disappear, and only (Z�

1 , α
�
1 ) for NG

modes remain as solutions. In the massless limit M → 0,
the gap in ω2 disappears and two dispersions ω1;2 become
the same linear one: ω ¼ cjkj.
Linear response theory.—Dynamics of a ripplon can also

be analyzed by the linear response theory. We consider the
ansatz as the static domain-wall solution and its fluctuation:
u ¼ u0 þ δu ¼ u0 þ aþeiðk·r−ωtÞ þ a�−e−iðk·r−ωtÞ. Inserting
this ansatz into the dynamical equation (5), we can obtain
the Bogoliubov–de Gennes equation,

�
ω2

c2
�2Mω

ℏ

�
a�

¼
�
ðk2−∂2

zÞþ
4me2mz∂z−m2ð3e2mz−1Þ

1þe2mz

�
a�þOða2�Þ;

ð13Þ

up to the linear order of a�. The normalizable solution is
a� ∝ emz and corresponding ω takes the value ω1;2 shown
in Eq. (12). In the massless limit M → 0, ω1 ¼ ω2 ¼ cjkj
gives the general solution δu ¼ emzfgþ1 eiðk·r−cjkjtÞ þ
g−1 e

−iðk·r−cjkjtÞ þ gþ2 e
iðk·rþcjkjtÞ þ g−2 e

−iðk·rþcjkjtÞg with arbi-
trary constants g�1;2 ∈ C. The localized magnon is obtained
by taking gþ1 ¼ −g−1 ¼ g0eiδ and g�2 ¼ 0 (parallel direction
to k), or g�1 ¼ 0 and gþ2 ¼ −g−2 ¼ g0eiδ (antiparallel
direction to k) with g0, δ ∈ R. The ripplon is obtained
by taking g1 ¼ g�2 ¼ g0eiδ and g3 ¼ g4 ¼ 0 (parallel
direction to k), or g1 ¼ g2 ¼ 0 and g3 ¼ g�4 ¼ g0eiδ

(antiparallel direction to k). For M ≠ 0 case, the solution
is δu1 ¼ emzfgþ1 eiðk·r−ω1tÞ þ g−1 e

−iðk·rþω1tÞg and δu2 ¼
emzfgþ2 eiðk·rþω2tÞ þ g−2 e

−iðk·r−ω2tÞg with arbitrary constants
g�1;2 ∈ C. gþ1;2 ¼ iAþ

1;2e
iδþ

1;2 and g−1;2 ¼ 0 (gþ1;2 ¼ 0 and
g−1;2 ¼ −iA1;2e

iδ−
1;2) correspond to the coupled ripplon

solution (Zþ
1;2, α

þ
1;2) [(Z

−
1;2, α

−
1;2)] in Eq. (11).

Commutation relation.—We obtain gapless and local-
ized magnon and ripplon with linear dispersions, Eq. (10),
only in the massless limit M → 0 and the coupled ripplon
with quadratic dispersion, Eq. (11a), with M ≠ 0 in the
vicinity of the domain wall. These modes are type-I (for
M → 0) and type-II (for M > 0) NG modes as a conse-
quence of the spontaneous breaking of the U(1) symmetry
for the phase rotation and the translational symmetry:H1 ≃
Uð1Þ ×R3 → H2 ≃R2 under the appearance of the
domain wall. In both cases, our dispersions saturate the
equality of the Nielsen-Chadha inequality [4]:
NI þ 2NII ≥ NBG, where NI, NII, and NBG are the total
numbers of the type-I NG modes, the type-II NG modes,
and broken generators (BG) which correspond to sponta-
neously broken symmetries. Recently, it has been shown in
Refs. [7,8] that for internal symmetry the equality of the
Nielsen-Chadha inequality is saturated as the Watanabe-
Brauner’s relation [6],

NBG − NNG ¼ 1

2
rankρ;

ρi;j ¼ lim
V→∞

1

V

Z
d3xð−i½Ωi;Ωj�Þ

����
u¼u0

; ð14Þ

where NNG ¼ NI þ NII is the number of NG modes, V is
the volume of the system, Ωi is the Noether’s charge or a
generator of broken symmetries, and [·; ·] is a commutator
or the Poisson bracket in classical level. According to this
relation, NBG ≠ NNG takes place when commutators of
broken generators are nonvanishing. This relation has been

FIG. 1. Schematic pictures of coupled ripplons and their
propagating directions for solutions (Zþ

1 , αþ1 ) (left) and (Z−
1 ,

α−1 ) (right). The middle shaded area shows the region of the
domain wall juj ≈ 1 (nz ≈ 0) and its tone shows the phase α of u
[direction of (nx, ny)]. The þ and − signs show the areas for
α > 0 and α < 0, respectively. The vertical axis is the z axis and
the horizontal axis shows the direction of the wave vector k in the
xy plane. For left (right) figures, the coupled ripplon propagates
in the right (left) direction. See the Supplemental Material for
animations of their dynamics [11].
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proven for internal symmetries such as the Heisenberg
ferromagnet and has been confirmed for space-time sym-
metries such as a quantized vortex in superfluid and a two-
dimensional Skyrmion in ferromagnets [10]. In our case, on
the other hand, broken generators consist of one internal
symmetry and one spatial symmetry which intuitively
commute because underlying symmetries are the direct
product and are independent of each other, i.e.,
H1=H2 ≃ Uð1Þ ×R. To check whether the relation,
Eq. (14), also holds in our case or not, we directly calculate
the commutation relation between symmetry generators of
the internal U(1) phase rotation and the translation.
Defining the momenta v conjugate to u as

v ¼ ∂LG

∂ _u ¼ _u�

c2ð1þ juj2Þ2 þ
iMu�

ℏð1þ juj2Þ ; ð15Þ

the Noether’s charges for the phase rotation and the
translation along z axis are obtained as

Θ ¼
Z

dzJ0α; J0α ¼ iuv; ð16Þ

P ¼
Z

dzJ0Z; J0Z ¼ ð∂zuÞv; ð17Þ

respectively. The commutator between P and Θ can be
calculated from ½uðz1Þ; vðz2Þ� ¼ iδðz1 − z2Þ, to yield

½P;Θ� ¼
Z

dz1

Z
dz2½J0Zðz1Þ; J0αðz2Þ�

¼ i
Z

dz1

Z
dz2½∂z1uðz1Þvðz1Þ; uðz2Þvðz2Þ�

¼ i
Z

dz1

Z
dz2f∂z1uðz1Þ½vðz1Þ; uðz2Þ�vðz2Þ þ uðz2Þ∂z1 ½uðz1Þ; vðz2Þ�vðz1Þg

¼
Z

dz1

Z
dz2f∂z1uðz1Þvðz2Þ þ uðz2Þ∂z1vðz1Þgδðz1 − z2Þ

¼
Z

dz∂z½uðzÞvðzÞ�: ð18Þ

For the static domain-wall solution, the first term in
Eq. (15) does not contribute to the commutator because of
_u ¼ 0. Consequently, the commutator becomes

−i½P;Θ� ¼ M
ℏ

Z
dz∂z

� juj2
1þ juj2

�
¼ M

ℏ

� juj2
1þ juj2

	
z¼þ∞

z¼−∞

¼ 2M
ℏ

�
1

2
½1 − nz�z¼þ∞

z¼−∞

�
≡ 2MW

ℏ
: ð19Þ

W is precisely the topological charge of the domain wall
and is proportional to the tension of the domain wall
[13,16] (see the Supplemental Material [11]). Evaluating
this in the domain-wall background u ¼ u0, we find
W ¼ 1. As a result, two generators P and Θ do not
commute as long as M ≠ 0, giving NBG − NNG ¼ 1 and
one type-II NG mode, or commute in the massless limit
M → 0 giving two type-I NG modes, which is consistent
with our result.
Conclusion.—In conclusion, we have considered NG

modes excited on one flat domain wall in the CP1 models
with the Ising potential. NG modes in the relativistic model
are the localized magnon for the U(1) phase rotation and the
translational ripplon which are independent of each other
and have linear dispersions. In the nonrelativistic limit, on
the other hand, there is one coupled ripplon with a quadratic
dispersion as the combination of the localized magnon and

the ripplon. We also find the coupled localized magnon and
the ripplon in the interpolating model connecting the
relativistic and nonrelativistic theories even though it has
the Lorentz invariance. The numbers of NG modes saturate
the equality of the Nielsen-Chadha inequality, and also
satisfy the Watanabe-Brauner’s relation in which the
commutator between two generators of the internal phase
mode and spatial translational mode gives the topological
domain-wall charge.
Quantum effects on localized type-II NG modes remain

as an important problem, which was studied for a vortex
with non-Abelian localized modes [18].
The term juj2=ð1þ juj2Þ ¼ ð1=2Þð1 − nzÞ in Eq. (19) is

known as the momentum map in symplectic geometry and
the D-term in supersymmetric gauge theory. Therefore, our
model can be extended to the CPn model, Grassmann σ
model [19,20], σ models on more general Kähler target
manifolds, and non-Abelian gauge theories. A domain wall
in two-component Bose-Einstein condensates has a differ-
ent structure of NG modes [21], although there are also
translational and internal U(1) zero modes [22]. This may
be because the U(1) zero mode is non-normalizable in their
case. If one couples a gauge field, their model reduces to
ours in the strong gauge coupling limit (see the
Supplemental Material [11]), with the internal U(1) mode
becoming normalizable.
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