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We study the nonequilibrium time evolution of the spin-1=2 anisotropic Heisenberg (XXZ) spin chain,
with a choice of dimer product and Néel states as initial states. We investigate numerically various short-
ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based
on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators
within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we
find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a
complete description even of local observables, while the quench-action formalism correctly captures the
steady state in this case.

DOI: 10.1103/PhysRevLett.113.117203 PACS numbers: 75.10.Jm, 02.30.Ik, 05.70.Ln

Introduction.—Recent, spectacular advances in the field
of ultracold atoms enabled experimentalists to investigate
the coherent time evolution of almost perfectly isolated
quantum many-body systems [1–4]. These new develop-
ments triggered tremendous theoretical interest [5–18] in a
long-standing problem of fundamental physical importance:
do isolated quantum systems reach an equilibrium in some
sense, and if the answer is positive, what is the nature of the
steady state reached?
In the absence of external driving forces, generic systems

are expected to reach a steady state locally indistinguish-
able from thermal equilibrium [5,7]. However, integrable
systems behave differently because conservation of the
expectation values of extra local charges prevents relaxa-
tion to a thermal state. It was suggested in Ref. [19] that in
the integrable case the long-time asymptotic stationary state
is described by a statistical ensemble involving all the local
conserved charges fQ̂ig, the generalized Gibbs ensemble
(GGE), defined by the density matrix

ρ̂GGE ¼ 1

Z
e−
P

i
βiQ̂i ; Z ¼ Tre−

P
i
βiQ̂i ; ð1Þ

where the “chemical potentials” fβig are determined by the
expectation values of the charges in the ensemble and the
initial quantum state.
The GGE idea has by now becomewidely accepted in the

field and has been verified in several specific cases. Until
recently, however, most investigations concerning GGE
were carried out in theories equivalent to free fermions
[20–29] or by numerical studies of relatively small systems
[30,31]. It is only recently that it has become possible to
examine genuinely interacting integrable systems such as
the one-dimensional Bose gas [32–34], theXXZHeisenberg
spin chain [35–37], or field theories [38–40].

However, until now there have only been a few precision
numerical tests for the predictions of the GGE against real-
time dynamics [37]. In our Letter, we perform real-time
numerical simulations on a genuinely interacting quantum
system, the anisotropic Heisenberg model, and compare the
relaxation of various local spin-spin correlation functions
to the predictions of two competing theories: the overlap-
incorporating thermodynamic Bethe ansatz (OTBA)
approach, which implements the quench-action method
[41], and the widely accepted GGE.
In agreement with some recent observations [42,43], we

find that these two approaches yield markedly different
predictions. We arrive at a surprising conclusion: while the
numerical results agree spectacularly with the OTBA, they
differ significantly from the exact predictions of the GGE
in a number of cases (see Fig. 2). These results lead to the
inevitable conclusion that the GGE approach fails as a
generic description of steady states in genuinely interacting
integrable quantum systems.
Quantum quench in the XXZ chain.—The XXZ

Heisenberg chain is a chain of s ¼ 1=2 spins interacting
via the Hamiltonian

H ¼ −
XL
i¼1

½σxi σxiþ1 þ σyi σ
y
iþ1 þ Δðσziσziþ1 − 1Þ�; ð2Þ

where σx;y;zi are the Pauli matrices at site i. This model
describes magnetism in real compounds [44] and plays
a fundamental role in the theory of strongly correlated
condensed-matter systems [45]. Here, we focus on the Ising
regime Δ > 1, which corresponds to a gapped antiferro-
magnetic phase in equilibrium.
We implement the nonequilibrium process via the

paradigmatic setting of quantum quench [46,47], whereby
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the time evolution of the system starts from the ground state
of some Hamiltonian but then at time t ¼ 0 some parameter
of the system is abruptly changed. Quantum quenches of
this kind can be implemented in a controlled fashion by
realizing the XXZ chain in systems of cold atoms in optical
lattices [48–52].
As initial states, we consider the translationally invariant

projection of the Néel state

jΨN
0 i¼

1þ T̂ffiffiffi
2

p j↑↓↑…i¼ 1ffiffiffi
2

p ðj↑↓↑…iþ j↓↑↓…iÞ; ð3Þ

which is a ground state in the Δ → ∞ limit, and the
similarly symmetrized dimer product state

jΨD
0 i ¼

1þ T̂ffiffiffi
2

p
���� ð↑↓ − ↓↑Þffiffiffi

2
p ð↑↓ − ↓↑Þffiffiffi

2
p …

�
; ð4Þ

which is one of the ground states of the Majumdar-Ghosh
Hamiltonian [53]. Here, T̂ is the one site translation
operator on the lattice. It is expected that ground states
of local Hamiltonians always relax to a steady state.
Failure of the GGE description of the steady-state

correlations.—To demonstrate that the GGE cannot give
an appropriate description of the steady state, we compare
its predictions for correlation functions with the results
of real-time out-of-equilibrium numerical simulations,
performed using the infinite size time evolving block
decimation (ITEBD) algorithm [54,55]. In the simulations,
translational invariance of the initial states in Eqs. (3) and
(4) was implemented by averaging over the two compo-
nents of the states [56]. The time evolution of three different
correlators is shown in Fig. 1 for a quench starting from the
dimer state for Δ ¼ 4 (red lines). The correlation functions
quickly converge to stationary values before the simula-
tions break down for large times (shaded regions) [57].
Strikingly, the exact GGE values of Ref. [37] (blue dotted

lines in Fig. 1) deviate significantly from the ITEBD results.
We report similar deviations for all Δ > 1 in Fig. 2, where
we display the long-time asymptotic values extracted from

the ITEBD simulation (red circles) together with the GGE
predictions (squares) for hσz1σz2i and hσz1σz3i, as functions
of Δ. We included truncated GGE (TGGE) results [35,36]
as well, obtained by keeping the first six nonzero charges in
the density matrix (1). The discrepancy between the GGE
and the ITEBD results is evident (for additional numerical
data, see the Supplemental Material [58]).
The mismatch between real-time simulations and GGE

results could be, in principle, the result of long relaxation
times beyond the reach of the ITEBD simulations. We rule
out this possibility by applying an alternative theoretical
method, the overlap thermodynamic Bethe ansatz (OTBA)
which implements the quench-action method [34,41] (see
below), and predicts exactly the asymptotic values of the
correlations. These values, shown as black dashed lines in
Fig. 1 and black stars in Fig. 2, are clearly in excellent
agreement with our ITEBD results. The state predicted by
the OTBA is a steady state of maximal conditional entropy.
Therefore, the excellent agreement proves that the ITEBD
simulation has reached the true asymptotic steady state and,
thus, makes the evidence for the breakdown of the GGE
conclusive. Moreover, it also demonstrates that the quench-
action-approach-based OTBA indeed correctly captures the
steady state of the XXZ model.
The TGGE predictions evaluated in Ref. [35] and the

OTBA results are also different in the Néel case, but for
large Δ, where the TGGE is reliable, this difference is
beyond our numerical resolution (Supplemental Material
[58]). We obtained similar results for x-x correlators for
both initial states, although for the latter ITEBD is not as
accurate as for the z-z correlators (cf. Ref. [59]).
We remark that translational invariance would be broken

for the dimer state without the symmetrization under T̂ in
Eqs. (3) and (4), and it is yet an open question whether it is
restored in the long-time limit after the quench [27,37].
Nevertheless, the GGEwas expected to describe the average
over the two components of the states of Eqs. (3) and (4), and
yet it fails to do so. Note that for the observable hσz1σz3i
translational averaging is immaterial since it is identical on
both sublattices.
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FIG. 1 (color online). Numerical simulation of the time evolution of correlation functions (a) hσz1σz2i, (b) hσz1σz3i, (c) hσz1σz4i starting
from the dimer initial state (4) for anisotropy Δ ¼ 4 as obtained by ITEBD (red lines). In the shaded region, the results are not reliable.
The horizontal lines show the GGE prediction [37] (blue dotted lines) and the prediction of the overlap TBA of the quench-action
approach (black dashed lines).
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Overlap thermodynamic Bethe ansatz.—The OTBA
method is formulated in the framework of the Bethe ansatz
[60], used to diagonalize the XXZ Hamiltonian (2).
Eigenfunctions corresponding to spin waves of M flipped
spins on a chain of length L are parametrized by a set ofM
complex numbers fλjg, called rapidities. Spin waves can
form bound states described by specific configurations of
rapidities, called strings [61]. In the thermodynamic limit
(TDL), defined by M → ∞, L → ∞ with M=L fixed, it is
convenient to introduce the densities ρnðλÞ of n strings in
rapidity space, together with the densities ρhnðλÞ of unoc-
cupied levels (holes).
The quench-action approach of Ref. [41] has been

developed to describe the steady state following a quantum
quench in Bethe ansatz integrable systems and has been
implemented before for the transverse field Ising chain [41]
and the Lieb-Liniger model [34]. This variational approach
selects the relevant states by minimizing the generalized
free energy (quench action)

SðfρngÞ ¼ −
2

L
Re lnhΨ0jfρnðλÞgi − sðfρnðλÞgÞ: ð5Þ

The first term involves the overlap between the initial state
jΨ0i and the steady state jfρnðλÞgi, characterized by the
string densities fρnðλÞg. The exact overlaps were computed
for the Néel state (3) in Refs. [62–65]. Here, we also
generalized the overlap formula for the dimer product state
(4) along the lines of Ref. [63]. In the TDL, the logarithm of
both overlaps can be written as

−
2

L
Re lnhΨ0jfρnðλÞgi ¼

X∞
n¼1

Z
π=2

−π=2
dλρnðλÞgnðλÞ ð6Þ

with the gnðλÞ functions given by

gN1 ðλÞ ¼ − ln
tanðλþ iη

2
Þ tanðλ − iη

2
Þ

4sin2ð2λÞ ; ð7aÞ

gD1 ðλÞ ¼ − ln
sinh4ðη=2Þcot2ðλÞ

sinð2λþ iηÞ sinð2λ − iηÞ ð7bÞ

for the Néel and dimer states, respectively. In both cases,
gN;D
n ðλÞ ¼ P

n
j¼1 g

N;D
1 ½λþ ðiη=2Þðnþ 1 − 2jÞ� for higher

strings (n > 1).
The second term sðfρnðλÞgÞ in Eq. (5) is the entropy

density [61,66] accounting for the number of microstates
realizing the set of macroscopic fρnðλÞg

sðρnÞ ¼
X∞
n¼1

Z
dλ

1

2

�
ρn ln

ρn þ ρhn
ρn

þ ρhn ln
ρn þ ρhn

ρhn

�
: ð8Þ

It is exactly half of the standard Yang-Yang entropy density
[61,66] due to the fact that only parity invariant microstates
have nonzero overlap [34,65].
The quench action (5) expresses the idea that the states

relevant in the TDL are those with both large overlaps with
the initial state and a large number of microscopic real-
izations. The steady state is captured by a saddle-point set
of string densities, with the saddle-point approximation
becoming exact in the TDL. The densities fρnðλÞg and
fρhnðλÞg are, however, not independent; interactions couple
the rapidities of all the spin excitations, as expressed by the
Bethe equations. As a consequence, the densities fρng and
fρhng satisfy coupled integral equations (constraints) [61]

anðλÞ ¼ ρnðλÞ þ ρhnðλÞ þ
X∞
m¼1

½Tnm∘ρm�ðλÞ: ð9Þ

Here, ½a∘b�ðλÞ ¼ R π=2
−π=2 dλ

0aðλ − λ0Þbðλ0Þ denotes convolu-
tion, and the interaction kernel is expressed as Tnm ¼
ð1 − δn;mÞajn−mj þ anþm þ 2

Pminfn;mg−1
j¼1 ajn−mjþ2j, with

πanðλÞ ¼ sinhðnηÞ=½coshðnηÞ − cosð2λÞ� and cosh η ¼ Δ.
The constrained extremum of SðfρnðλÞgÞ is then found
through the standard treatment [61] and leads to the
following integral equations for the functions ηnðλÞ≡
ρhnðλÞ=ρnðλÞ:
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FIG. 2 (color online). Δ dependence of the ITEBD (red circles with error bars), overlap TBA (black stars), full GGE [37] (full blue
squares), and truncated GGE (empty green squares) results for the large time expectation values (a) hσz1σz2i and (b) hσz1σz3i after the
quench from the dimer initial state (4).
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ln ηnðλÞ ¼ gnðλÞ þ μnþ
X∞
m¼1

½Tnm∘ lnð1þ η−1m Þ�ðλÞ: ð10Þ

Here, μ is a Lagrange multiplier introduced to fix the
overall magnetization to zero. By examining gnðλÞ, we
obtained for both initial states that ln ηn ∼ ηn2 for large n.
This implies that the higher strings are suppressed as
∝ e−ηn

2

, so the infinite set of equations (10) can be safely
truncated to relatively few equations and solved numeri-
cally. Having the numerical solution for ηn at hand, we can
replace them into Eq. (9) and determine the densities
efficiently. (For further technical details see Ref. [59]).
OTBA consistency checks.—There are several ways to

check that the numerically obtained saddle-point string
densities fρ�ng are, indeed, correct and correspond to the
right initial states and to the right saddle point. A nontrivial
check is provided by the computation of the norm of the
initial state in the TDL, i.e.,

0 ¼ −
1

L
lnhΨ0jΨ0i ¼ Sðfρ�nðλÞgÞ; ð11Þ

with the quench action Eq. (5) evaluated via Eqs. (8) and
(6) for the saddle-point solution. Equation (11) is, indeed,
satisfied by our saddle-point solution within the accuracy of
our numerical simulations Oð10−8Þ. Notice that if this
integral sum rule was violated, then the spectral weight of
the saddle-point solution would be zero in the TDL.
Another important consistency check is provided by the

expectation values of the conserved charges. These can be
expressed in terms of the saddle-point densities as [67]

hQ̂2mi ¼
X∞
n¼1

Z
π=2

−π=2
dλρ�nðλÞqð2mÞ

n ðλÞ; ð12Þ

with qð2mÞ
n ðλÞ ¼ 2π

P
n
j¼1½−ð∂=∂λÞ�2ma1½λþ ðiη=2Þðnþ

1 − 2jÞ� the energy, in particular, being given by
E ¼ 2 sinh ηhQ̂2i. The saddle-point values of these charges
must equal their values in the initial states. These latter
were computed for the symmetric Néel state in
Refs. [35,36]. Here, we determined them using both these
methods in the symmetrized dimer state jΨD

0 i. We evalu-
ated the first six nonzero charges fhQ̂2migm¼1;…;6 and
compared them with the expectation values computed from
Eq. (12). Excellent agreement up to more than 8 digits is
found in all cases, providing a further stringent verification
of the OTBA solution.
Steady-state correlations.—With the saddle-point string

densities at hand, we then computed various short distance
correlation functions in the steady state by making use of
the recent results of two of the present authors, who
provided exact formulas for the 2-point correlation func-
tions in terms of the string densities [68]. We compared
these values with the results of our ITEBD simulations.

Excellent agreement is found between OTBA and ITEBD
for both initial states and for all Δ > 1 values (cf. Figs. 1
and 2 and the Supplemental Material [58] for detailed
numerical data). This establishes the quench-action-
approach-based OTBA as a correct description of the
steady state and the failure of GGE at the same time.
Discussion.—In this Letter, we studied various correla-

tion functions in the asymptotic steady states for quantum
quenches in the XXZ spin chain. We found that the
predictions of the generalized Gibbs ensemble differ
significantly from the results of real-time ITEBD simula-
tions in the dimer case, thereby signaling the breakdown of
the GGE. We also determined these asymptotic correlators
by applying the quench-action-based overlap TBA descrip-
tion of the steady state and obtained numerically accurate
predictions. We found that while the quench-action-based
OTBA correctly captures the asymptotic steady state, the
GGE fails for the states considered here. Finding a macro-
scopic statistical ensemble description of the steady state and
clarifying the conditions for the validity of the GGE in
strongly interacting systems, therefore, remain intriguing
open questions.
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Note added.—During the final stages of this work, a related
paper appeared [43] that independently arrived at Eq. (7a)
and in which the difference between the GGE and the
OTBA predictions for nearest-neighbor correlators in the
quench starting from the Néel state was observed as well.
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