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Bilayer graphene is susceptible to a family of unusual broken symmetry states with spin and valley
dependent layer polarization. We report on a microscopic study of the domain walls in these systems,
demonstrating that they have interesting microscopic structure related to the topological character of the
ordered states. We use our results to show that the metal-insulator transition temperature in bilayer
graphene is reduced from mean-field estimates by thermal excitation of domain walls.
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Introduction.—Neutral bilayer graphene [1,2] and its
ABC-stacked multilayer cousins [3–7], are attractive plat-
forms for unconventional two-dimensional electron system
physics because flat bare bands cross near their Fermi levels,
and because order induces large momentum-space Berry
curvatures [7] in their quasiparticle bands. Theoretical
studies have identified a variety of potential broken sym-
metry states in neutral suspended bilayer graphene [7–33].
The band eigenstates in bilayer graphene are equal weight
coherent sums of components localized in each layer, and
have an interlayer phase that is strongly wave vector
dependent. When lattice-scale corrections to bilayer graphe-
ne’s massive Dirac model [1,2] are neglected, the broken
symmetry states predicted by mean-field theory have a
charged quasiparticle energy gap [7,8,10–12] and sponta-
neous layer polarization within each of the system’s four
spin-valley flavors, each giving rise to a quantized Hall
contribution with magnitude e2=h. Recent experiments
[34–42] appear to rule out a competing family of nematic
states [18–21], which do not have a quasiparticle gap and
break rotational symmetry [43].
The theoretical expectation [7–9,16,17] is that among

the gapped broken symmetry states long-range Coulomb
interactions should favor the subset with no overall layer
polarization. Recent experiments [42] utilize Zeeman
response to an in-plane magnetic field [13] to identify
the ground state as either a layer antiferromagnet [7] in
which opposite spins have opposite layer polarization, or a
quantum spin Hall insulator [7,16] in which layer polari-
zation changes when either spin or valley is reversed. (In
mean-field theories the former state is favored by lattice-
scale exchange interactions [9].) In this Letter we present
a microscopic theory of domain walls in which the sense
of layer polarization of one flavor is reversed, focusing on
the unusual properties associated with the ordered states’
topological character. These domain walls are expected
to be present in disordered bilayer graphene samples

because they can be induced by spatial variation in the
potential difference between layers. They also proliferate
thermally above an Ising phase transition temperature,
which we show is substantially suppressed relative to
mean-field theory estimates.
Continuum model mean-field theory.—We first establish

our notation by discussing uniform chiral symmetry break-
ing in bilayer graphene in terms of the ordered state
quasiparticle Hamiltonians [7] suggested by mean-field
calculations and renormalization group analyses [8–15]:

HHF ¼
X
kαβss0

c†kαs½h0 þ hF�ckβs0 ;

h0 ¼ −ϵk½cosð2ϕkÞσαβx þ sinð2ϕkÞσαβy �δss0 ;
hF ¼ −½V0 þ Vzσ

αα
z σββz �Δβs0

αs : ð1Þ

Here Greek letters label layer, s and s0 label spin, ϵk ¼
ðvSLℏkÞ2=γ1 is the band dispersion, vSL is the single-layer
Dirac-model velocity, γ1 is the interlayer hopping energy,
cotϕk ¼ τzkx=ky with τz ¼ �1 denoting valley K or K0,
and V0;z ¼ ðVs � VdÞ=2 is the sum and difference of the
same (s) and different (d) layer interactions, which for
convenience we assume to be short ranged. The order
parameters Δβs0

αs ¼ A−1P
khc†kβs0ckαsif must be determined

self-consistently. Note that in using short-range interactions
we are assuming that the screened Coulomb interaction
range is short relative to the short-distance cutoff of the
two-band continuum model, vSLℏ=γ1, but much larger than
the graphene lattice constant. The form used for the mean-
field Hamiltonian in Eq. (1) has been simplified by noting
that the mean-field ground state has no net layer polari-
zation, and that the mean-field interaction vertices are
diagonal in layer [13]. This Hamiltonian generates a family
of states differing only in the flavor dependence of the sign
of interaction-generated mass terms proportional to mzσz.
In this Letter we concentrate on domain walls formed
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within a single flavor, reserving comments on the role of
spin and valley degrees of freedom to the end of the article.
The gap equation can be solved to yield an implicit

solution for mz [39]:

1 ¼ ν0Vs

Z
γ1

0

1

2ε
½fð−ε − μÞ − fðε − μÞ�dε; ð2Þ

where ν0 ¼ γ1=ð4πℏ2v2SLÞ is the band density of states
per flavor, γ1 is the continuum model ultraviolet cutoff

energy, μ is the Fermi energy, ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þm2

z

q
, and fðεÞ ¼

ð1þ eε=kBTÞ−1 is the Fermi function. For charge-neutral
bilayer graphene and mz ≪ γ1, we find that the quasipar-
ticle gap is 2mz ¼ 4γ1 expð−2=Vsν0Þ at zero temperature,
and that mz vanishes at T ¼ TMF

c , where

TMF
c ¼ eγmz=πkB; ð3Þ

and γ is Euler’s constant [39].
Microscopic theory of domain walls.—We now consider

the microscopic electronic structure of the domain walls
that separate regions with opposite layer-polarization signs.
Because the layer-pseudospin dependent term in the band
Hamiltonian is not a small correction to an otherwise
pseudospin independent Hamiltonian, it is immediately
clear that bilayer graphene domain walls are quite different
from those of an ordinary easy-axis ferromagnet. In order to
use periodic boundary conditions we must, as illustrated in
Fig. 1(a), allow for two adequately separated domain walls

along the direction in which we allow the sign of mass to
change. We use a plane-wave expansion method to solve
the spatially inhomogeneous gap equations. The interaction
terms in the mean-field Hamiltonian are spatially local and
can be parameterized in terms of position dependent masses
miðxÞ associated with the three Pauli matrices σi. For short-
range interactions, their plane-wave matrix elements are

miðk01; k1Þ ¼
Vs

2A

X
fαβ;q

hc†k0
1
þqx;qy;α

σαβi ck1þqx;qy;βif; ð4Þ

where i ¼ x; y; z, and f labels filled quasiparticle states.
Note that the mass terms depend on k01 − k1 only, and that
they are independent of the momentum in the y direction.
The inverse Fourier transform with respect to k01 − k1
specifies miðxÞ.
The self-consistent mean-filed equations are readily

solved in the presence of domain walls. Results for finite
square simulation cells of side L are summarized in Figs. 1
and 2. A typical result for the domain wall mz profile,
plotted in Fig. 1(b), can be accurately fit to the form
mzðxÞ ¼ m0 tanh½ðx − x0Þ=

ffiffiffi
2

p
ξ�, where 2m0 is the quasi-

particle gap and x0 is the position of the domain wall center.
As illustrated in Fig. 2(c), the energy cost of a domain wall

FIG. 1 (color online). (a) Schematic summary of our domain
wall calculations. Two domain walls are oriented along the y
direction and the mass changes sign along the x direction. (b),(c)
Typical mean-field solutions formzðxÞ andmxðxÞ variation across
a domain wall. Note the different scales in (b) and (c). (d) Energy
spectrum of a model with sharp domain walls. The gray area is
the bulk continuum. Black and gray colors are used to distinguish
chiral states localized at the domain walls which propagate in
opposite directions, while solid and dashed lines are used to
distinguish states with hσxi < ð>Þ0. The two black dots identify
the states with E ¼ �jm0j=

ffiffiffi
2

p
.

FIG. 2 (color online). Microscopic domain wall properties for
square simulation cells with side L and a uniform energy gap
2m0. In these figures, red dots are numerical data, while the thin
solid lines are power-law fits. (a) Condensation energy Ec of
bilayer graphene (in units γ1=μm2) as a function ofm0. The dashed
line is obtained from microscopic calculations. (b) Domain wall
width ξ as a function of m0. (c) Domain wall energy EDW as a
function of L. (d) Domain wall surface tension J ≡ EDW=L (in
units of γ1=0.1 μm2) as a function of m0. The dashed line is
the Ginzburg-Landau theory prediction for the domain wall
surface tension. (e) and (f) Comparison of the collective (TDW

c )
and mean-field (TMF

c ) critical temperatures.

PRL 113, 116803 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 SEPTEMBER 2014

116803-2



EDW in our numerical calculation is accurately proportional
to L, indicating that finite-size effects are not playing a large
role. Figures 2(d) and 2(b) illustrate our finding that the
domain wall energy per unit length (the two-dimensional
surface tension) J ¼ EDW=L and the domain wall width ξ
have power-law dependences on the uniform system mass
m0. An unbiased fit of numerical results to J ∼mα

0 and
ξ ∼mβ

0 yields α ¼ 1.72 and β ¼ −0.36. These values are
close to expectations based on dimensional analysis as we
discuss later. We conclude that the surface tension increases
and the domain wall width decreases with increasing m0.
Interlayer coherence and domain walls.—The band

states of bilayer graphene are coherent combinations [2]
of top and bottom layer components with an interlayer
phase ϕ that is twice the momentum orientation angle ϕk.
The mx and my pseudospin magnetizations of both gapped
and ungapped states therefore vanish after summing over
momenta. As illustrated in Fig. 1(c), our numerical calcu-
lations have revealed that a finite net in-plane pseudospin
magnetization develops inside domain walls with a mag-
nitude typically one order smaller than m0. The in-plane
pseudospin magnetization is oriented across the domain
wall, i.e., in the x direction for the geometry we have
chosen. Intriguingly, the sign of mx is the same for both
kink and antikink domain walls. The appearance of these
in-plane pseudospin components is a surprise since they are
not an obvious consequence of the spatial dependence of
mz. For example, the uniform system mx and my quasi-
particle linear response to pseudospin fields in the ẑ
direction, characterized by the response functions χxzðqÞ
and χyzðqÞ, both vanish identically. As we explain below,
the appearance of a nonzero mx in the domain walls is
related to the topological character of the ordered states.
Near a domain wall, the sign of mz is reversed and the

local value of the Hall conductivity changes by two
quantized units [7,44,45], giving rise to two chiral zero
modes per valley propagating along the domain wall, as
illustrated in Fig. 1(d). As we now explain, we attribute the
finite mx value in the domain wall to the properties of the
topological edge states it traps. At any value of ky the mean-
field Hamiltonian H in the presence of domain walls is
invariant under simultaneous rotation by 180° around the
pseudospin x̂ axis and mirror transformation x → −x
through the domain wall: σxHσx ¼ Hð−∂x;−xÞ. Here
we assume that x ¼ 0 is chosen to lie at the midpoint of
a single domain wall. It follows that for any ky, the two
components of the eigenstates ψðxÞ ¼ ½uðxÞ; vðxÞ�T satisfy
vðxÞ ¼ �uð−xÞ, and, hence, that the pseudospin operator
σx will have a nonzero expectation value near x ¼ 0.
Similarly since σyHðkyÞσy ¼ −Hð−kyÞ, if ðu; vÞT is an
eigenstate ofH at ky with eigenvalue E, then ðv;−uÞT is an
eigenstate at −ky with eigenvalue −E. It follows that
the two chiral states with E ¼ 0 will appear at opposite
values of ky and have opposite expectation values of
hσxi. For example, in the case of a sharp kink, i.e., for

mzðxÞ ¼ m0sgnðxÞ, the chiral states at ky ¼ 0 have
E ¼ �jm0j=

ffiffiffi
2

p
(lying in the gap) and hσxi ¼ ∓1.

Although the edge states are not fully polarized in the
general case, states within a given chiral state branch have
nonzero values of hσxi with a common sign and the edge
state occupations are generically different for any position
of the chemical potential within the uniform-state mass gap.
Typical behavior is illustrated in Fig. 1(d). The dashed and

solid edge state branches have different signs of hσxi and
different occupations. As a consequence, mxðxÞ exhibits a
positive peak at each domain wall center. This in-plane
pseudospin magnetization is independent of the domain wall
sign and valley index, and thus survives summation over
flavors for any gapped broken symmetry state that breaks
chiral symmetry within flavors [7]. We note that this non-
linear response also arises near electric field driven domain
walls [44–52] and layer stacking domain walls [45–47].
Ising critical temperature estimate.—We now utilize our

numerical results for domain wall properties to estimate
the critical temperature TDW

c above which domain walls
nucleated by thermal fluctuations proliferate and Ising
long-range order within flavors is lost. For this purpose,
we follow a commonphysical argument [53]which compares
the energy cost associated with domain wall nucleation with
the corresponding entropic free energy gain. The energy cost
to form a domainwall with perimeterP in the uniform state is
JP, whereas the entropy is kB lnCP. HereCP is the number of
distinct closed-loop nonintersecting P=W-step walks. For
domain walls of width ξ, W ∼ 2

ffiffiffi
2

p
ξ [53] is the minimum

distance over which a domain wall can change direction and
CP ¼ ð1þ ffiffiffi

2
p ÞP=W [53]. It then follows that for temperatures

above TDW
c ¼ WJ=½kB lnð1þ

ffiffiffi
2

p Þ�, the proliferation of
domains separating regions with different layer polarization
signs is thermodynamically favored and long-range order is
lost. Combining our numerical results for ξ and J yields

kBTDW
c

m0

¼ 0.64

lnð1þ ffiffiffi
2

p Þ ðm0=γ1Þαþβ−1: ð5Þ

Since αþ β − 1 > 0 and m0 ≪ γ1, we conclude that
kBTDW

c ≪ m0.
We have so far ignored fermionic thermal fluctuations

which produce particle-hole excitations and would limit the
critical temperature if the domain wall energy was very large.
Because the mean-field theory gap equation is identical to
that of BCS theory, it implies a critical temperature limit that
is proportional tom0. As illustrated in Figs. 2(e) and 2(f), the
ratio TMF

c =TDW
c decreases with increasing m0, in agreement

with Eq. (5). Noting that γ1 ∼ 400 meV and that exper-
imental [39] values of m0 in bilayer graphene are always
smaller than 4 meV, we conclude that the temperature to
which spontaneous layer polarization order survives is
limited in practice by domain wall nucleation.
Phenomenological theory of domain walls.—The

domain wall shape found in our numerical calculations
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is consistent [53,54] with the Ising-order Ginzburg-
Landau-theory energy functional

F ¼
Z

d2~r

�
c
2
ð∇mzÞ2 þ V½mzðxÞ� − Ec

�
; ð6Þ

where V½mz� ¼ −rmzðxÞ2=2þ umzðxÞ4 with both r and u
positive, and Ec ¼ −r2=16u is the condensation energy per
unit area of a ground state with uniform mz. We include the
constant Ec in this expression so that the minimum value
of F, which occurs for constant masses m�

z ¼ �m0 ¼
�ðr=4uÞ1=2, is zero. For a single domain wall configuration
in which mz → �m0 for x → �∞, the functional [Eq. (6)]
is minimized by mzðxÞ ¼ �m0 tanh½ðx − x0Þ=

ffiffiffi
2

p
ξ� with

ξ ¼ ffiffiffiffiffiffiffi
c=r

p
. The close agreement between our numerical

domain wall shapes and this analytic expression demon-
strates that the Ginzburg-Landau theory for spontaneously
gapped states in bilayer graphene is of the standard Ising
magnetism form, in spite of the unusual microscopic
physics. The Ginzburg-Landau model reproduces micro-
scopic values form0, ξ, and Ec when we set c ¼ 4Ecξ

2=m2
0,

r ¼ 4Ec=m2
0, and u ¼ Ec=m4

0. (Note that m0 is strongly
temperature dependent for a given value of the interaction
strength.) In Fig. 2(a) we demonstrate that the Ginzburg-
Landau theory expression for the domain wall surface
tension J ¼ 8

ffiffiffi
2

p
ξEc=3 agrees accurately with our micro-

scopic calculations, and that the power laws relating ξ and J
to the microscopic gap satisfy α − β ¼ 2, also in agreement
with the Ginzburg-Landau theory.
Discussion.—It is instructive to compare spontaneously

gapped bilayer graphene with BCS superconductors. In both
cases mean-field theory predicts a critical temperature that is
linear in the gap parameter m0. Fluctuation effects differ
qualitatively in the two cases, however, in the first place
because of the difference between the order parameter
dimensions. In superconductors, the excitations whose pro-
liferation limits the critical temperature are vortices rather
than domain walls. Additionally, the free fermion dispersion
is linear near the Fermi energy in the superconductor case but
quadratic in bilayer graphene. As a result, the coherence
length in superconductors is related to the gap Δ by
ξ ∼ ℏvSL=Δ, and the collective fluctuation limit on the
critical temperature must therefore exceed the nucleation
energy of a vortex, i.e., kBTc ∼ Ecξ

2 ∼ εF which is inde-
pendent of and much larger than the mean-field critical
temperature estimate. A similar estimate of the collective
limit on Tc can be obtained by appealing to Kosterlitz-
Thouless theory. These considerations explain why critical
temperatures of weakly disordered superconducting thin
films are still accurately predicted by mean-field theory,
even though the phase transition is ultimately of Kosterlitz-
Thouless character. In bilayer graphene, on the other hand,
the relationship between ξ and the gap can be estimated using
m0 ∼ ðℏvSL=ξÞ2=γ1. This estimate yields β ¼ −0.5, in rough
agreement with the value β ¼ −0.36 obtained by fitting our

numerical results. It follows that for bilayer graphene,
collective fluctuations limit the critical temperature to a value
that is substantially lower than the mean-field-theory esti-
mate. Unlike the case of superconductors, in bilayer graphene
thermal fluctuations in the order parameter configuration play
an important role in limiting the critical temperature.
When the four spin-valley flavors are taken into account,

the 24 ¼ 16 gapped broken symmetry states that are close
in energy [9] can be classified into five distinct phases [7].
This in turn leads to 16 distinct types of domain walls [55].
In Fig. 3 we illustrate the cases [55] in which spin rotational
invariance is not broken, and only the quantum valley
Hall (QVH) state and quantum anomalous Hall (QAH)
state are allowed. Because in the absence of intervalley
scatterings the valley-projected Chern numbers are quan-
tized [7,44,45,52] to �1, all domain walls support edge
states, as shown in Fig. 3. States in which spin-rotational
invariance is also broken can be similarly analyzed. Each of
the 16 types of domain wall hosts a Luttinger liquid [56]
with distinct properties. Our work therefore suggests that
large-area bilayer graphene gapped states should exhibit
interesting transport anomalies [57]. Similar phenomena
will occur in thicker ABC-stacked few-layer [7] graphene
systems which have larger spontaneous gaps [36,37] and
more robust domain walls.
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FIG. 3 (color online). Tight-binding calculation of distinct
domain wall zero-mode patterns in gapped bilayer graphene
samples with spin-rotational invariance. The red lines denote the
zero modes localized at domain walls between (a) two QAH
regions with opposite total Hall conductance, (b) two QVH
regions with opposite layer polarization, and (c) a QVH and a
QAH region. The gray lines represent the edge states on the
outermost zigzag boundaries.
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