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We explore the 32 crystallographic point groups and identify topological phases of matter with robust
surface modes. For n ¼ 3; 4, and 6 of the Cnv groups, we find the first-known 3D topological insulators
without spin-orbit coupling, and with surface modes that are protected only by point groups; i.e., the
relevant symmetries are purely crystalline and do not include time reversal. To describe these Cnv systems,
we introduce the notions of (a) a halved mirror chirality, an integer invariant which characterizes half-
mirror-planes in the 3D Brillouin zone, and (b) a bent Chern number, the traditional Thouless–Kohmoto–
Nightingale–den Nijs invariant generalized to bent 2D manifolds. We find that a Weyl semimetallic phase
intermediates two gapped phases with distinct halved chiralities. In addition to electronic systems without
spin-orbit coupling, our findings also apply to intrinsically spinless systems such as photonic crystals and
ultracold atoms.
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Insulating phases are deemed distinct if they cannot be
connected by continuous changes of the Hamiltonian that
preserve both the energy gap and the symmetries of the
phase; in this sense we say that the symmetry protects
the phase. Distinct phases have strikingly different
properties—of experimental interest are the presence of
boundary modes, which in many cases distinguish a trivial
and a topological phase. The symmetries that are ubiqui-
tous in crystals belong to the space groups, and among
them the point groups are the sets of transformations that
preserve a spatial point. Despite the large number of space
groups in nature, there are few known examples in which
boundary modes are protected by crystal symmetries alone
[1–4]. In this Letter, we explore the 32 crystallographic
point groups and identify topological phases of matter with
robust surface modes. For n ¼ 3; 4, and 6 of the Cnv
groups, we find the first-known 3D topological insulators
(TIs) without spin-orbit coupling, and with surface modes
that are protected only by point groups; our findings differ
from past theoretical proposals [5–7] in not needing time-
reversal symmetry (TRS). To describe these Cnv systems,
we introduce the notions of (a) a halved mirror chirality, an
integer invariant which characterizes half-mirror planes in
the 3D Brillouin zone, and (b) a bent Chern number, the
traditional Thouless—Kohmoto—Nightingale—den Nijs
invariant [8] generalized to bent 2D manifolds (illustrated
in Fig. 1).
To date, all experimentally realized TIs are strongly spin-

orbit coupled, and a variety of exotic phenomenon originate
from this coupling, e.g., Rashba spin-momentum locking
on the surface of a TI [16]. Considerably less attention has
been addressed to spinless systems, i.e., insulators and
semimetals in which spin-orbit coupling is negligibly weak

[4,5]. The topological classifications of spinless and spin-
orbit-coupled systems generically differ. A case in point is
SnTe, a prototypical Cnv system with strong spin-orbit
coupling [2,17]. In SnTe, the mirror Chern number [1] was
introduced to characterize planes in the 3D BZ which are
invariant under reflection, or mirror planes in short. The
Bloch wave functions in each mirror plane may be
decomposed according to their representations under
reflection, and each subspace may exhibit a quantum

FIG. 1 (color online). Bottom: (a) Half-mirror-planes (HMPs)
in the 3D Brillouin zone (BZ) of a hexagonal lattice with
CðbÞ
3v symmetry. Blue face that projects to Γ̄ − K̄: HMP1. Brown,

K̄ − K̄0: HMP2. Red, Γ̄ − K̄0: HMP3. (b) HMPs in the 3D BZ of a
tetragonal lattice with C4v symmetry. Red face that projects to
Γ̄ − M̄: HMP4. Blue, Γ̄ − X̄ − M̄: HMP5. (c) Blue face that
projects to Γ̄ − K̄: HMP1 in the 3D BZ of a hexagonal lattice
with C6v symmetry. Note that the black-colored submanifold in
(c) is not a HMP. In each of (a),(b) and (c) we define a bent
Chern number on the triangular pipe with its ends identified. Top:
Nonblack lines are half-mirror lines (HMLs) in the corresponding
2D BZ of the 001 surface; each HML connects two distinct
Cm-invariant points with m > 2.
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anomalous Hall effect [18]; we denote Ce (Co) as the Chern
number in the even (odd) subspace of reflection. One may
similarly define mirror Chern numbers for spinless Cnv
systems, as illustrated for C3v in Figs. 2(a) and 2(b).
However, for n ¼ 2; 4, and 6, such characterization is
always trivial due to twofold rotational symmetry and
the lack of spin-orbit coupling, i.e., Ce ¼ Co ¼ 0 [9].
In this work, we propose that point-group-protected

surface modes can exist without mirror Chern numbers,
if the point group satisfies the following criterion: there
exist at least two high-symmetry points (k1 and k2) in the
surface BZ, which admit two-dimensional irreducible
representations (irreps) of the little group [19] at each
point. This is fulfilled by crystals with C4v and C6v
symmetries, but not C2v. There exist in nature two kinds
of C3v∶C

ðaÞ
3v and CðbÞ

3v , which differ in the orientation of their
mirror planes; compare Fig. 2(a) with Fig. 2(b). Only CðbÞ

3v
fulfills our criterion. Henceforth, Cnv is understood to mean
CðbÞ
3v ; C4v, and C6v. We are proposing that surface bands of

Cnv systems assume topologically distinct structures on
lines which connect k1 to k2. We are particularly interested
in half-mirror lines (HMLs), that each satisfies two con-
ditions. (a) It connects two distinct Cm-invariant points for
m > 2; we illustrate this in Fig. 1, where a Cm-invariant
point is mapped to itself under an m-fold rotation, up to
translations by a reciprocal lattice vector. (b) All Bloch
wave functions in a HML may be diagonalized by a single
reflection operator. On these HMLs, we would like to
characterize orbitals that transform in the 2D irrep of Cnv,
e.g., (px, py) or (dxz, dyz) orbitals. We refer to these as the
doublet irreps, and all other irreps are of the singlet kind.
We begin by parametrizing HMLi with si ∈ ½0; 1�, where

si ¼ 0 (1) at the first (second) Cm-invariant point. The
subscript i labels the different HMLs in a Cnv system; the
ith HML is invariant under a specific reflection Mi. At
si ¼ 0 and 1, (001) surface bands form doubly degenerate

pairs with opposite mirror eigenvalues, irrespective of
whether the system has TRS. To prove this, let UðgÞ
represent the symmetry element g in the orbital basis.
Suppose UðMiÞjηi ¼ ηjηi for η ∈ f�1g. By assumption,
jηi transforms in the doublet representation; i.e., it is a
linear combination of states with complex eigenvalues
under UðCmÞ, for m > 2. It follows that ½UðCmÞ −
UðC−1

m Þ�jηi is not a null vector, and moreover it must have
mirror eigenvalue −η due to the relationMiCmM−1

i ¼ C−1
m .

Given these constraints at si ¼ 0 and 1, there are Zways to
connect mirror-even bands to mirror-odd bands, as illus-
trated schematically in Fig. 3. We define the halved mirror
chirality χi ∈ Z as the difference in the number of mirror-
even chiral modes with mirror-odd chiral modes; if χi ≠ 0,
the surface bands robustly interpolate across the energy
gap. χi may be easily extracted by inspection of the surface
energy-momentum dispersion: first draw a constant-energy
line within the bulk energy gap and parallel to the HML,
e.g., the blue line in Fig. 3. At each intersection with
a surface band, we calculate the sign of the group
velocity dE=dsi, and multiply it with the eigenvalue under
reflection Mi. Finally, we sum this quantity over all
intersections along HMLi to obtain χi. In Fig. 3, we find
two intersections as indicated by red squares, and
χi ¼ ð1Þð1Þ þ ð−1Þð−1Þ ¼ 2. The Z classification of
(001) surface bands relies on doublet irreps in the surface
BZ; on surfaces which break Cnv symmetry, the surface
bands transform in the singlet irreps, and cannot assume
topologically distinct structures.
Thus far we have described the halved chirality χi as a

topological property of surface bands along HMLi, but we
have not addressed how χi is encoded in the bulk wave
functions. Taking ẑ to lie along the rotational axis, each
HMLi in the surface BZ is the ẑ projection of a half-mirror
plane (HMPi) in the 3D BZ, as illustrated in Fig. 1. Each
HMPconnects twodistinctCm-invariant lines form > 2, and
all Blochwave functions in aHMPmay be diagonalized by a
single reflection operator. HMPi is parametrized by ti ∈
½0; 1� and kz ∈ ð−π; π�, where ti ¼ 0 (1) along the first

(a) (b) (c) (d)

FIG. 2 (color online). (a) Top-down view of hexagonal BZ with

CðaÞ
3v symmetry; our line of sight is parallel to the rotational axis.

(b) Hexagonal BZ with CðbÞ
3v symmetry. (c) Tetragonal BZ with

C4v symmetry. (d) Hexagonal BZ with C6v symmetry. Reflection-
invariant planes are indicated by solid lines. Except the line
through Γ, all nonequivalent Cn-invariant lines are indicated by
circles for n ¼ 2, triangles for n ¼ 3, and squares for n ¼ 4. For

each of fCðaÞ
3v ; C

ðbÞ
3v g, there are two independent mirror Chern

numbers, defined as Ce (Co) in the mirror-even (odd) subspace
[9]. In both (a) and (b), Ce and Co are defined on a single mirror
plane indicated in red; in (b), the two red lines correspond to two
projected planes which connect through a reciprocal lattice vector
(dashed arrow).

FIG. 3 (color online). Distinct connectivities of the (001)
surface bands along the half-mirror lines. Black solid (dotted)
lines indicate surface bands with eigenvalue þ1 (−1) under
reflection Mi; crossings between solid and dotted lines are robust
due to reflection symmetry. For simplicity, we have depicted all
degeneracies at momenta s ¼ 0 and s ¼ 1 as dispersing linearly
with momentum. This is true if the little group of the wave vector
(at s ∈ f0; 1g) is C3v, but for C4v and C6v such crossings are in
reality quadratic [9].
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(second) Cm-invariant line. Then the halved mirror chirality
has the following expression by bulk wave functions [9]

χi ¼
1

2π

Z
HMPi

dtidkzðF e − F oÞ ∈ Z: ð1Þ

For spinless representations, M2
i ¼ I, and we label bands

withmirror eigenvalueþ1 (−1) asmirror-even (mirror-odd).
F e (F o) is defined as the Berry curvature of occupied
doublet bands [20,21], as contributed by the mirror-even
(-odd) subspace.

For CðbÞ
3v , there exists three independent HMPs as

illustrated in Fig. 1(a), which we label by i ∈ f1; 2; 3g;
all other HMPs are related to these three by symmetry. The

C6v group is obtained from CðbÞ
3v by adding sixfold rota-

tional symmetry, which enforces χ2 ¼ 0, and χ1 ¼ −χ3.
The sign in the last identity is fixed by our parametrization
of ftig, which increase in the directions indicated by blue
arrows in Fig. 2. Thus, HMP1 is the sole independent HMP
for C6v. Finally, we find that there are two HMPs for C4v,
labeled by i ∈ f4; 5g [Fig. 1(b)]. Unlike the other high-
lighted HMPs, HMP5 is the union of two mirror faces,
HMP5a and HMP5b, which are related by a π=2 rotation.
States in HMP5a are invariant under the reflection
My∶y → −y, while in HMP5b the relevant reflection is
Mx∶x → −x. The product of these orthogonal reflections is
a π rotation (C2) about ẑ, thus Mx ¼ C2My. In the doublet
representation, all orbitals are odd under a π rotation, thus
UðC2Þ ¼ −I and all states in HMP5 may be labeled by a
single operator My ≡M5.
The invariants fχig are well defined so long as bulk

states in the HMPs are gapped, which is true of Cnv
insulators. These invariants may also be used to character-
ize Cnv semimetals, so long as the gaps close away from the
HMPs. Such band touchings are generically Weyl nodes
[22,23], though exceptions exist with a conjunction of
time-reversal and inversion symmetries [24]. The chirality
of each Weyl node is its Berry charge, which is positive
(negative) if the node is a source (sink) of Berry flux. By the
Nielsen-Ninomiya theorem, the net chirality of all Weyl
nodes in the BZ is zero [25]. To make progress, we divide
the BZ into “unit cells,” such that the properties of one unit
cell determine all others by symmetry. As seen in Fig. 1,
these unit cells resemble the interior of triangular pipes;
they are known as the orbifolds T3=Cnv. The net chirality of
an orbifold can be nonzero, and is determined by the Chern
number on the 2D boundary of the orbifold. As each
boundary resembles the surface of a triangular pipe, we call
it a bent Chern number. We define C123; C45, and C6 as bent

Chern numbers for CðbÞ
3v ; C4v, and C6v, respectively. C

ðbÞ
3v

systems in the doublet representation are described by
four invariants (χ1; χ2; χ3; C123), which are related by
parity½χ1 þ χ2 þ χ3� ¼ parity½C123� [9]. If

P
3
i¼1 χi is odd,

C123 must be nonzero due to an odd number of Weyl nodes

within the orbifold, which implies the system is gapless. If
the system is gapped,

P
3
i¼1 χi must be even. However, the

converse is not implied. For C4v, a similar relation holds:
parity½χ4 þ χ5� ¼ parity½C45� [9]. These parity constraints
may be understood in light of a Weyl semimetallic phase
that intermediates two gapped phases with distinct halved
chiralities. There are four types of events that alter the
halved chirality χi of HMPi; we explain how Weyl nodes
naturally emerge in the process. (i) Suppose the gap closes
between two mirror-even bands in HMPi. Around this band
touching, bands disperse linearly within the mirror plane,
and quadratically in the direction orthogonal to the plane.
Within HMPi, the linearized Hamiltonian around the band
crossing describes a massless Dirac fermion in the even
representation of reflection. If the mass of the fermion
inverts sign,

R
HMPi

F e=2π changes by η ∈ f�1g, implying
that χi also changes by η through (1). This quantized
addition of Berry flux is explained by a splitting of the band
touching into two Weyl nodes of opposite chirality, and on
opposite sides of the mirror face [Fig. 4(a)]. In analogy with
magnetostatics, the initial band touching describes the
nucleation of a dipole, which eventually splits into two
opposite-charge monopoles; the flux through a plane
separating two monopoles is unity. (ii) The same argument
applies to the splitting of dipoles in the mirror-odd sub-
space, which alters

R
HMPi

F o=2π by κ ∈ f�1g, and χi by
−κ. For (iii) and (iv), consider two opposite-charge
monopoles which converge on HMPi and annihilate,
causing χi to change by unity. The sign of this change

(a)

(e) (f) (g)

(b) (c) (d)

FIG. 4 (color online). (a)–(d) illustrate how the halved chirality
of a HMP may change. The direction of arrows indicate whether
Weyl nodes are created or annihilated. þð−Þ labels a Berry
monopole with positive (negative) charge; e (o) labels a crossing
in the HMP between mirror-even (-odd) bands. (e)–(g) In three
examples, we provide a top-down view of the trajectories of
Weyl nodes, in the transition between two distinct gapped phases.
Our line of sight is parallel to ẑ. Black lines indicate mirror
faces, while colored lines specially indicate HMPs, with the same

color legend as in Fig. 1. (e) describes a C4v system, (f) CðbÞ
3v , and

(g) C6v.
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is determined by whether the annihilation occurs in the
mirror-even or -odd subspace. As modeled in the
Supplemental Material [9], the transition between two
distinct gapped phases is characterized by a transfer of
Berry charge between two distinct HMPs [Figs. 4(e)–4(g)].
In the intermediate semimetallic phase, the experimental
implications include Fermi arcs on the (001) surface
[23,26,27].
We hope our classification stimulates a search for

materials with Cnv symmetry. Why is Cnv special? We
propose sufficient criteria for gapless surface modes whose
robustness rely on a symmetry group. Minimally, (i) the
symmetry must be unbroken by the presence of the surface.
Additionally, either (ii) a reflection symmetry exists so that
mirror subspaces can display a quantum anomalous Hall
effect, or (iii) there exist at least two high-symmetry
points in the surface BZ, which admit higher-than-one-
dimensional irreps of the symmetry group. In addition to
predicting new topological materials, these criteria are also
satisfied by the well-known SnTe class, [2] and also the Z2

insulators [6,7,28–35]. Among the 32 crystallographic
point groups, only the Cn and Cnv groups are preserved
for a surface that is orthogonal to the rotational axis [19].
Though all Cnv groups satisfy (ii), the lack of spin-orbit

coupling implies only CðaÞ
3v and CðbÞ

3v systems can have
nonvanishing mirror Chern numbers [9]. While all Cn
groups by themselves only have one-dimensional irreps,
the C4 or C6 group satisfies (iii) in combination with TRS,
as is known for the topological crystalline insulators
introduced in Ref. [5]. Finally, only a subset of the Cnv
groups possess two-dimensional irreps which satisfy (iii):

CðbÞ
3v ; C4v, and C6v. In the second row of Table I, we list the

topological invariants which characterize C3v; C4v, and
C6v, for bands of any irrep. In addition to the well-known
mirror Chern numbers (Ce; Co), we have introduced the bent
Chern numbers as a measure of the Berry charge in each
orbifold T3=Cnv. If the orbital character of bands near the
gap is dominated by the doublet irreps, then the halved
mirror chirality χi becomes a useful characterization, as
seen in the third row of Table I. In particular, the mirror

Chern numbers of CðbÞ
3v are completely determined by

(χ1; χ2; χ3; C123) [9]. The singlet and doublet irreps of
realistic systems are often hybridized. The topological
surface bands that we predict here are robust, so long as
this hybridization does not close the bulk gap, and if there
are no errant singlet surface bands within the gap [5].

We discuss generalizations of our findings. In addition to
materials whose full group is Cnv, we are also interested in
higher-symmetry materials whose point groups reduce to
Cnv subgroups in the presence of a surface, for n ¼ 3; 4, or
6. We insist that these higher-symmetry point groups have
neither (a) a reflection plane that is orthogonal to the
principal Cn axis, nor (b) a twofold axis that lies
perpendicular to the Cn axis, and parallel to the mirror
plane. The presence of either (a) or (b) imposes χ ¼ Ce ¼
Co ¼ 0 in any (half) mirror-plane of the Cnv system [9].
Only one such higher-symmetry point group exists: D3d
reduces to C3v on the 111 surface [10]. Many Cnv systems
naturally have TRS, which constrains all CðaÞ

3v and CðbÞ
3v

invariants in Table I to vanish, with one independent
exception for CðbÞ

3v : χ1 ¼ −χ3 can be nonzero [9]. TRS
does not constrain the invariants of C4v or C6v. Our analysis
of charge-conserving systems are readily generalized to
spinless superconductors which are describable by mean-
field theory. Because of the particle-hole redundancy of the
mean-field Hamiltonian, the only nonvanishing invariants
from Table I belong to CðaÞ

3v and CðbÞ
3v ; among these non-

vanishing invariants, the only constraint is χ1 ¼ χ3 for C
ðbÞ
3v

[9]. While we have confined our description to electronic
systems without spin-orbit coupling, the halved chirality is
generalizable to photonic crystals which are inherently
spinless, and also to cold atoms. Finally, we point out that
the bent Chern number and the halved chirality are also
valid characterizations of spin-orbit-coupled systems with
mirror symmetry. In particular, (1) applies to representa-
tions with spin if we redefine the mirror-even (-odd) bands
as having mirror eigenvalues þi (−i) [9]. The implications
are left to future work.
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