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Symmetries in nature offer very simple descriptions of complex systems. Partial Dynamical Symmetries
(PDS) can considerably broaden their relevance. To present the first extensive test of a PDS for nuclei, we
compare an SU(3) PDS to gamma to ground band BðE2Þ values for 47 deformed nuclei. The parameter-free
PDS is found to be quite successful, but with characteristic discrepancies, suggesting that symmetry
remnants are more pervasive than heretofore realized. Furthermore, the SU(3) PDS gives new insights into
collective models (e.g., interacting boson approximation). If these reproduce the PDS, they reflect finite
size effects, while differences from the PDS point to SU(3) configuration mixing.
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Symmetries in nature are widespread and fundamental
to modern science. In complex systems, dynamical sym-
metries (DSs) [1]—or spectrum-generating algebras—
define specific quantum numbers and selection rules and
provide analytic, often parameter-free predictions of ener-
gies and transition rates. They aim at describing the astonish-
ingly regular and simple patterns exhibited by complex
many-body correlated systems. A DS occurs when the
Hamiltonian can be written in terms of Casimir operators
of a group and its subgroups. Successive terms in the
Hamiltonian introduce specific quantum numbers and break
a degeneracy of a higher group.
A very successful application of DSs arises in atomic

nuclei in the context of the interacting boson approximation
(IBA) model [1], which describes collective nuclei in
terms of pairs of valence nucleons forming bosons with
angular momentum 0-ℏ (s bosons) and 2-ℏ (d bosons)
and their interactions. The parent group for the IBA is U(6),
and it has nontrivial DSs U(5) (for vibrational nuclei),
SU(3) (axially symmetric deformed nuclei), and O(6)
(γ soft axially asymmetric deformed nuclei). A few
empirical manifestations of nuclei close to each of these
have been proposed (see, e.g., Ref. [2]). However, the vast
majority of nuclei deviate from any DS. The DSs, thus,
serve mainly as idealized benchmarks and as basis states for
diagonalizations of model Hamiltonians. Recently, though,
the proposal of partial dynamical symmetries (PDSs) [3]
and quasidynamical symmetries [4], which break the DSs
while preserving important symmetry remnants, suggests a
potentially more widespread role of symmetries in nuclei.
However, only one empirical manifestation of a PDS based
on SU(3) has been identified [5], namely, in 168Er, where
analytic, parameter-free, PDS predictions agree very well
with both the data and with multiparameter numerical
symmetry-breaking calculations. Is this accidental, or does

this PDS describe a broad range of nuclei? If so, this could
enhance the applicability of symmetries to nuclei and other
complex systems such as atoms, molecules, clusters, and
crystals [6–9].
It is, therefore, the purpose of this Letter to present the

first extensive test of this PDS by studying E2 transition
rates covering 47 even-even nuclei in the rare earth region.
We find that the PDS is quite successful and discuss both
the agreement with the data and characteristic discrepan-
cies, the role of finite system size, how the PDS relates to
broken-symmetry numerical calculations, and how the
latter can now be better understood.
SU(3) is a dynamical symmetry describing a nucleus

with axially symmetric prolate quadrupole deformation.
The level scheme consists of sequences of rotational bands
labeled by quantum numbers: λ, μ, and K, where λ and
μ specify the SU(3) representation (family of levels), and K
is the projection of the total angular momentum on the
symmetry axis. The ground state (g.s.) band hasK ¼ 0, and
the first excited representation has two rotational bands.
Except for very small K admixtures due to the Elliott-
Vergados [10] transformation, these latter have K ¼ 0
(beta, β band) and 2 (gamma, γ band). States in the β
and γ bands with equal angular momenta are degenerate
[e.g., Eð2þβ Þ ¼ Eð2þγ Þ].
The E2 operator that is a generator of SU(3) is given

as TðE2ÞSUð3Þ ¼ ðs†dþ d†sÞ − ffiffiffi

7
p

=2ðd†dÞð2Þ in terms of s
and d boson creation and destruction operators. This gives
the important selection rule Δðλ; μÞ ¼ 0. That is, SU(3)
predicts vanishing BðE2Þ values from the β and γ bands to
the g.s. band.
Clearly, such a model cannot describe most deformed

nuclei since the β and γ bands are highly nondegenerate and
they both (especially the γ band) have collective transitions
to the g.s. band. Indeed, these empirical deviations from
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SU(3) have long inspired successful symmetry-breaking
numerical IBA calculations [11–13].
The SU(3) PDS of Leviatan [5] presents an alternate

approach. It is a special realization of the IBA Hamiltonian
given by Eq. (2) of Ref. [5], whose key features are that
the degeneracy of the β and γ bands is broken, but a strict
SU(3) structure is, nevertheless, preserved for the γ and
g.s. bands. No such SU(3) structure is preserved for the β
band or other states.
One would think this would immediately rule out the

PDS as a viable description since SU(3) forbids E2
transitions between the γ and g.s. bands. However,
TðE2ÞSUð3Þ is not the most general E2 operator. Indeed,
one can write TðE2Þ ¼ ðs†dþ d†sÞ − ffiffiffi

7
p

=2ðd†dÞð2Þþ
θðs†dþ d†sÞ ¼ TðE2ÞSUð3Þ þ θðs†dþ d†sÞ. The first term
does give vanishing E2 transitions from the γ to the g.s.
band, but the second gives finite contributions.
If we consider relative interband BðE2Þ values—ratios

of BðE2Þ values from a γ band state to two states in the
g.s. band—we obtain

BðE2∶Jγ → J0grÞ
BðE2∶Jγ → J00grÞ

¼ hJ0grjθðs†dþ d†sÞjJγi2
hJ00grjθðs†dþ d†sÞjJγi2

: ð1Þ

Note that θ cancels, and, therefore, these PDS BðE2Þ
ratios are parameter free. Yet the PDS has been shown to
give very good agreement with the data for γ to g.s. band
BðE2Þ values in the well-studied nucleus 168Er (see
Ref. [5], and Fig. 1 and Table I in the present work).
Our aim is to assess if this intriguing result is an anomaly

or widespread. To do this, we investigated 47 rare earth
region nuclei from Sm to Hg. The β-γ splitting can always
be fit by varying the strengths of two terms in the PDS
Hamiltonian without affecting γ to g.s. band BðE2Þ values.
The critical test is, thus, if γ to g.s. band BðE2Þ values can
be reproduced while preserving the SU(3) character for
these states. In 22 of the 47 nuclei, there are sufficient E2
transition data.
Figure 1 shows a number of examples of the compar-

isons for a wide range of nuclei from Gd to Os. In the other
nuclei, the comparisons are generally similar. For each
nucleus, the relative interband γ band to g.s. band BðE2Þ
values are shown. We also give the R4=2 value (R4=2 ∼ 3.33
for axial rotor nuclei) and valence nucleon number Nval
counting to the nearest closed shell using the standard
magic numbers 50, 82, and 126. The upper left panel is for
168Er and recapitulates the Leviatan results [5].
Overall, the parameter-free SU(3) PDS predictions

account very well for these key data in a wide variety of
deformed nuclei [and, with two parameters, also for γ-β
degeneracy breaking and intraband BðE2Þ values [16]].
Note that 186Os lies at the beginning of a transitional region,
has an R4=2 as low as 3.16, and yet also shows reasonable
agreement. Data from the decay of the 5þγ level in 184W
would be useful.

Interestingly, the main discrepancies are systematic: In
most cases, the PDS significantly underestimates the spin-
increasing transitions and overestimates the spin-decreasing
transitions (the nucleus 168Yb is an exception for the spin-
increasing transitions from the even spin initial states.)
Figure 2 shows that the agreement in Fig. 1 is not trivial.
It gives the comparisons for shape transitional nuclei, 152Sm
and 154Gd at the N ¼ 90 spherical-deformed shape tran-
sition, and 180Os, and 188Os in a region with gamma softness
and decreasing quadrupole deformation. The SU(3) PDS
is not expected to work for such nuclei and, indeed, all
exhibit large disagreements.
Table I, a compilation and correction of information from

Refs. [5,12,13], along with updated data, summarizes the
experimental relative BðE2Þ values for 168Er. It also
includes the Alaga rules [15], which assume only a
separation of intrinsic and rotational motion, and initial
and final states with pure K values of 0 and 2, the PDS

FIG. 1 (color online). Comparison of PDS predictions (calcu-
lated for the appropriate boson number) with the data on the
relative γ band to g.s. band E2 transitions in several deformed
nuclei. The red (black) bars are the data [14] (PDS predictions).
One transition is normalized to 100 for each initial state. The
symbol< on a red bar signifies an upper limit (usually because of
unknown E2=M1 mixing ratio).
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predictions, and results of two numerical IBA calculations
that break SU(3). One of these, Warner-Casten-Davidson
(WCD) [12], was the first detailed IBA calculation for a
deformed nucleus. The other used a revised approach, the

consistent Q formalism (CQF) [13], which is simpler, has
one fewer parameter, and agrees better with these data than
the PDS or the WCD (this is most dramatic for the 5þγ
level). Figure 1 and Table I show that the PDS is in very
good agreement with widespread data and also very similar
to the WCD IBA calculations [12] for 168Er. However, the
data are systematically further from the benchmark Alaga
rules than the PDS and WCD, and the CQF calculations
agree better with the data. These points will turn out to be
very instructive.
These comparisons of the PDS with the data, the Alaga

rules, and numerical IBA calculations pose two fundamen-
tal questions: Why do the PDS predictions, which also have
pureK values for the γ and g.s. bands, differ from the Alaga
rules, and how can such seemingly different descriptions as
the SU(3) PDS and broken-symmetry (WCD) numerical
IBA calculations be simultaneously successful and so
similar? Understanding this will give insights into the
nature of the PDS predictions and into the effects of
symmetry breaking in collective models which have been
the backbone of successful treatments of collective even-
even nuclei for decades.
The answer to the first question lies in the nature of

the IBA model (and, hence, the PDS) as a valence space
model in which the number of valence nucleons is con-
served and whose predictions are valence nucleon-number
dependent [1]. The differences between the PDS and the
Alaga rules are, in fact, solely due to valence nucleon-
number-dependent effects, as can be seen from the SU(3)
matrix elements of the θ term in TðE2Þ for γ to g.s. band
transitions (see Ref. [1], p. 55). The success of the PDS is
perhaps the most striking systematic evidence for such
effects so far discovered and leads to a new understanding
of IBA calculations.
To address this second issue, we consider the discrep-

ancies that do occur. These latter, as noted, are systematic.
Consider the γ to ground Alaga rules. They are always
small for spin-increasing transitions. The reason is simple.
Consider 2þγ to 4þ1 transitions. The 4þ1 state has zero
intrinsic angular momentum and 4ℏ units of rotational
angular momentum. The 2þγ level is dominated by 2ℏ units
of intrinsic (vibrational) angular momentum and zero units
of rotational angular momentum. An E2 transition con-
necting them primarily changes the rotational angular
momentum by 4ℏ and is highly suppressed.
Simple models can often be improved by introducing

configuration mixing. In deformed nuclei, γ-ground band
mixing is a well-established phenomenon [17]. Such
mixing adds coherent components to the transition matrix
elements that can be either constructive or destructive.
However, in the special case of unperturbed transitions
that are forbidden, an added component, regardless of
sign, can only increase the BðE2Þ value. Hence, the
disagreements between the PDS and the data in Fig. 1
and Table I for spin-increasing transitions are clearFIG. 2 (color online). Similar to Fig. 1, for transitional nuclei.

TABLE I. Detailed results for 168Er. The table shows relative γ
to g.s. transitions for the data, the Alaga rules [15], the PDS [5],
the WCD IBA calculations [12], and the CQF IBA calculations
[13]. For each initial state, the transition with the largest Alaga
value is set to 100.

Iπi → Iπf
168Er Alaga PDS WCD CQF

2γ
þ → 0þ 56.2(11) 70 64.3 66 54

2γ
þ → 2þ 100 100 100 100 100

2γ
þ → 4þ 7.3(4) 5 6.3 6 8

3γ
þ → 2þ 100 100 100 100 100

3γ
þ → 4þ 62.6(14) 40 49.3 48 69

4γ
þ → 2þ 19.3(4) 34 28.1 30 18

4γ
þ → 4þ 100 100 100 100 100

4γ
þ → 6þ 13.1(12) 8.64 12.5 12 16

5γ
þ → 4þ 100 100 100 100 100

5γ
þ → 6þ 123(14) 57.1 79.6 72 125

6γ
þ → 4þ 11.2(10) 26.9 20.3 23 9

6γ
þ → 6þ 100 100 100 100 100

6γ
þ → 8þ 37.6(72) 10.6 18.0 17 20
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signatures that such a simple model cannot account for
missing perturbations.
Thus, if numerical IBA calculations differ from the PDS

(that is, differ from what would be expected due solely to
finite number effects), those differences are a measure of
mixing effects. Any of the nuclei we have studied can show
this, but we use the results for 168Er in Table I as a
convenient example since it has been a standard test bench
for collective models of deformed nuclei. Thus, we con-
clude that the numerical WCD IBA results (which are
almost identical to the PDS) must contain quite weak
ΔK ¼ 2 mixing effects for these interband transitions.
Though noted previously [5,12,13], this weak mixing
has not been generally recognized.
Now consider the later CQF calculations (Table I), which

deviate further from the Alaga rules and which are in better
agreement with the data than the PDS and the WCD
calculations. From the previous discussion, this implies that
they contain stronger symmetry breaking, that is, stronger
mixing of SU(3) configurations [this is also evident from an
expansion of the wave functions in an SU(3) basis and a
band mixing analysis (see Refs. [13,18])] and establishes
that this mixing plays a complementary role to finite
nucleon-number effects in actual nuclei. Thus, we see that
a comparison of Alaga rules, PDS, and numerical calcu-
lations gives us a tool to disentangle the effects of finite
valence nucleon-number and symmetry-breaking contribu-
tions in calculations of axially deformed atomic nuclei. The
upshot is a better understanding of decades of collective
model calculations that highlights the balance of valence
nucleon-number effects and mixing in manifestations of
collectivity.
To summarize, we have presented the first extensive test

of a partial dynamical symmetry and have shown that it
accounts very well for an abundance of data [degeneracy
breaking of the γ and β bands and γ to g.s. BðE2Þ values] in
a widespread survey of axially deformed atomic nuclei,
although it does not completely account for the differences
between interband BðE2Þ values and geometrical models
of pure intrinsic states (Alaga rules). The differences of
the PDS from geometrical expectations stem from finite
nucleon-number effects, and are, in fact, the most direct
evidence for their importance in collective nuclei. Further,
numerical IBA calculations can be dissected in terms of
nucleon-number and specific band mixing effects, the latter
directly reflected in deviations of predicted γ to g.s. band
BðE2Þ values from the PDS. The better agreement with
these data of the CQF calculations than the PDS or earlier
calculations, especially in spin-increasing γ to g.s. band
transitions, signals the need for mixing effects that are
absent from the PDS.
The present results suggest a much wider applicability of

dynamical symmetries, that the IBA triangle is suffused
with important elements of symmetry, and encourage

detailed tests of other PDSs (see Ref. [19] for examples).
They also point more generally to the complementary roles
of constituent number and configuration mixing in the rise
of collectivity in finite interacting systems.
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