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We report on the first complete calculation of the KL − KS mass difference, ΔMK , using lattice QCD.
The calculation is performed on a 2þ 1 flavor, domain wall fermion ensemble with a 330 MeV pion mass
and a 575 MeV kaon mass. We use a quenched charm quark with a 949 MeV mass to implement Glashow-
Iliopoulos-Maiani cancellation. For these heavier-than-physical particle masses, we obtain ΔMK ¼
3.19ð41Þð96Þ × 10−12 MeV, quite similar to the experimental value. Here the first error is statistical,
and the second is an estimate of the systematic discretization error. An interesting aspect of this calculation
is the importance of the disconnected diagrams, a dramatic failure of the Okubo-Zweig-Iizuka rule.
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Introduction.—The KL − KS mass difference ΔMK ,
with a value of 3.483ð6Þ × 10−12 MeV [1], is an important
quantity in particle physics which led to the prediction
of the energy scale of the charm quark nearly 50 years ago
[2–4] and whose small size places strong constraints on
possible new physics beyond the standard model. This
mass difference is believed to arise from K0-K̄0 mixing
caused by second-order weak interactions. However,
because ΔMK is suppressed by 14 orders of magnitude
compared to the energy scale of the strong interactions and
must involve a change in strangeness of two units, this is a
promising quantity to reveal new phenomena which lie
outside the standard model. A quantity closely related to
ΔMK is the indirect CP violation parameter ϵK, which
arises in the same mixing process. The experimental values
ofΔMK and ϵK are both known very accurately, making the
precise calculation of ΔMK and ϵK within the standard
model an important challenge.
As an example of new physics, consider a process

which occurs with unit strength but at a very high energy
scaleΛ and which changes strangeness by two units. Such a
process might be represented at low energies as the ΔS ¼ 2
four-fermion operator ð1=Λ2Þs̄ds̄d where s̄ and d are
operators creating a strange quark and destroying a down
quark, respectively. Establishing the validity of the standard
model prediction for ΔMK at the 10% level would then
provide a lower bound on Λ: Λ ≥ 104 TeV—an energy
scale 4 orders of magnitude greater than is effectively
available in present laboratory experiments.
In perturbation theory, the standard model contribution

to ΔMK is separated into short-distance and long-distance
parts. The short-distance part receives the largest contri-
bution from momenta on the order of the charm quark
mass. In the recent next-to-next-to-leading-order (NNLO)
perturbation theory calculation of Brod and Gorbahn [5],

the NNLO terms were found to be as large as 36% of
the leading-order and next-to-leading-order (NLO) terms,
raising doubts about the convergence of the perturbation
series at this energy scale. At present, the long-distance
part of ΔMK is even less certain, with no available results
with controlled errors because the long-distance contribu-
tions are nonperturbative. However, an estimate given by
Donoghue et al. [6] suggests that the long-distance con-
tributions may be sizable.
The calculation of ϵK is under much better control,

because it is CP violating and the largest contribution
involves momenta on the scale of top quark mass, where
perturbation theory should be reliable. However, the same
NNLO difficulties in predicting the charm quark contribu-
tion to ϵK enters at the 8% level [5]. In addition, the long-
distance contribution to ϵK is estimated to be 3.6% by
Buras et al. [7], again suggesting the need for a reliable
nonperturbative method. Here, long and short distances
refer to the space-time separation between the two pointlike
ΔS ¼ 1 weak operators which enter the calculation of
ΔMK or ϵK when the internal loop momenta are much less
than the W boson mass. Conventionally, separations on the
scale of 1=ΛQCD are referred to as “long distance.”
Lattice QCD provides a first-principles method to com-

pute nonperturbative QCD effects in electroweak processes,
in which all errors can be systematically controlled. We
have proposed a lattice method to compute ΔMK and ϵK
[8,9]. An exploratory calculation of ΔMK [10] has been
carried out on a 2þ 1 flavor, 163 × 32 domain wall fermion
ensemble with an unphysically large 421 MeV pion mass.
We obtained a mass difference ΔMK which ranged
from 6.58ð30Þ × 10−12 MeV to 11.89ð81Þ × 10−12 MeV
for kaon masses varying from 563 to 839 MeV. This
exploratory work was incomplete since we included only
a subset of the necessary diagrams.
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In this Letter, we report on a full calculation, including
all diagrams, with a lighter pion mass, larger volume,
and improved statistics. The large lattice spacing and
unphysical quark masses used in the calculation presented
here prevent the resulting ΔMK from being viewed as a test
of the standard model. However, this calculation demon-
strates that a realistic lattice calculation of ΔMK should be
possible within a few years. This calculation of amplitudes
containing two effective weak operators represents an
important advance in lattice technique and should allow
future calculation of long-distance effects in rare kaon
decays and, possibly, heavy quark processes.
Evaluation of (ΔMK).—We begin by summarizing the

lattice method for evaluating ΔMK [10]. The essential step
is to integrate the time-ordered product of two first-order
weak Hamiltonians over a fixed space-time volume:

A ¼ 1

2

Xtb

t2¼ta

Xtb

t1¼ta

h0jTfK̄0ðtfÞHWðt2ÞHWðt1ÞK̄0ðtiÞgj0i: ð1Þ

A class of diagrams contributing to this integrated corre-
lator is represented schematically in Fig. 1. After inserting
a sum over intermediate energy eigenstates and summing
explicitly over t2 and t1 in the interval ½ta; tb�, one obtains

A ¼ N2
Ke

−MKðtf−tiÞ
X

n

hK̄0jHW jnihnjHW jK0i
MK − En

×

�
−T −

1

MK − En
þ eðMK−EnÞT

MK − En

�
: ð2Þ

Here, T ¼ tb − ta þ 1 is the time extent in lattice units of
the integration volume and NK a known normalization
factor associated with the interpolating operator K̄0. The
differences ta − ti and tf − tb are assumed to be sufficiently
large that only physical K̄0 and K0 states appear in the
initial and final states. The coefficient of the term propor-
tional to T in Eq. (2) provides a result for ΔMK:

ΔMK ¼ 2
X

n

hK̄0jHW jnihnjHW jK0i
MK − En

: ð3Þ

The exponential terms coming from states jni with En >
MK in Eq. (2) are exponentially decreasing as T increases.
These terms are negligible for sufficiently large T. For our
small spatial volume and heavier-than-physical pion mass,
there will be exponentially increasing terms coming from

only π0 and vacuum intermediate states. We evaluate the
matrix element hπ0jHW jK0i and subtract this π0 exponen-
tially increasing term explicitly from Eq. (2). We also
perform a subtraction for the η state where the exponential
decrease with increasing T may be insufficient for it to be
neglected. This has a less than 10% effect on the final
result. For the vacuum state, we add a pseudoscalar density,
s̄γ5d, to the weak Hamiltonian to eliminate the matrix
element h0jHW þ css̄γ5djK0i. Since this pseudoscalar
density can be written as the divergence of an axial current,
the final, physical mass difference will not be changed by
adding this term. After the removal of these exponentially
increasing terms, a linear fit at sufficiently large T will
determine ΔMK .
The ΔS ¼ 1 effective Hamiltonian used in this calcu-

lation is

HW ¼ GFffiffiffi
2

p
X

q;q0¼u;c

VqdV�
q0sðC1Q

qq0
1 þ C2Q

qq0
2 Þ; ð4Þ

where Vqd and Vq0s are Cabibbo-Kobayashi-Maskawa
matrix elements, while fQqq0

i gi¼1;2 are current-current
operators defined as

Qqq0
1 ¼ s̄iγμð1 − γ5Þdiq̄jγμð1 − γ5Þq0j;

Qqq0
2 ¼ s̄iγμð1 − γ5Þdjq̄jγμð1 − γ5Þq0i: ð5Þ

Since the Wilson coefficients C1 and C2 are calculated
from the standard model in the continuum, we must relate
our lattice operators to corresponding operators normalized
in a continuum scheme. We do this nonperturbatively
using the Rome-Southampton regularization invariant
(RI) renormalization scheme [11]. At present, C1 and C2

have been computed to NLO in the MS scheme [12]. We
use a perturbative calculation of Lehner and Sturm,
extending to our four-flavor case the results given in
Ref. [13], to convert these MS values for C1 and C2 into
the RI scheme.
There are four types of diagrams shown in Fig. 2 that

contribute to the four-point correlator given in Eq. (1). In

FIG. 1. One type of diagram contributing to A in Eq. (1). Here,
t2 and t1 are integrated over the time interval ½ta; tb� represented
by the shaded region.

FIG. 2. The four types of diagrams contributing to the mass
difference ΔMK . The shaded circles are the ΔS ¼ 1 weak
Hamiltonians. The black dots represent the kaon sources.
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our previous work [10], we included only the first two
types. All diagrams are included in the present calculation.
The disconnected type 4 diagrams are expected to be the
dominant source of statistical noise.
Details of the calculation.—This calculation is performed

on a lattice ensemble generated with the Iwasaki gauge
action and 2þ 1 flavors of domain wall fermions [14,15].
The space-time volume is 243 × 64 and the inverse lattice
spacing a−1 ¼ 1.729ð28Þ GeV. The fifth-dimensional
extent is Ls ¼ 16, and the residual mass is mres ¼
0.00308ð4Þ in lattice units. The light and strange sea
quark masses are ml ¼ 0.005 and ms ¼ 0.04 corres-
ponding to pion and kaon masses Mπ ¼ 330 MeV and
MK ¼ 575 MeV. A valence charm quark with mass

mMS
c ð2 GeVÞ ¼ 949 MeV provides Glashow-Iliopoulos-

Maiani cancellation. We use 800 gauge configurations
separated by ten time units.
We refer to Fig. 1 to explain how this four-point function

is evaluated. We use Coulomb-gauge wall sources for the
kaons. These two kaon sources are separated in time by 31
lattice units. The two weak Hamiltonians are separated by
at least six time units from the kaon sources (ta − ti and
tf − tb ≥ 6) so that the kaon interpolating operators will
project onto physical kaon states. For type 1 and type 2
diagrams, we use the strategy of Ref. [10]: 64 propagators
are computed using a point source on each of the 64 time
slices. The first of the two weak Hamiltonian densities is
located at this point. The propagators obtained with this
point source are used to connect that Hamiltonian to the
second Hamiltonian which can be summed over the full
space-time region between ta and tb. For type 3 and type 4
diagrams, we use 64 random wall source propagators to
construct the quark loops. In order to reduce the noise
coming from the random numbers, we use six sets of
random sources for each time slice, color, and spin. Thus,
4608 such random source propagators are computed for
each gauge field configuration. All the diagrams are
averaged over all 64 time translations. For the light quark
propagators, we calculate the lowest 300 eigenvectors of
the Dirac operator and use low mode deflation to accelerate
the light quark inversions.
Results.—The results for the integrated correlators

are shown in Fig. 3. The three curves correspond to the
three different operator combinations: Q1Q1, Q1Q2, and
Q2Q2. The numbers are bare lattice results without any
Wilson coefficients or renormalization factors. All the
exponentially increasing terms have been removed from
the correlators, so we expect a linear behavior for
sufficiently large T. When T becomes too large, the errors
increase dramatically as should be expected since the
disconnected diagrams have an exponentially decreasing
signal-to-noise ratio. The straight lines correspond to
linear fits to the data points in the range ½7; 20�. The
χ2=d:o:f: given in the figure suggest that these fits describe
the data well.

Another method to check the quality of these fits is to
plot the effective slope, in analogy to the effective mass
plots used when determining a mass from a correlation
function. The effective slope at a given time T is calculated
using a correlated linear fit to three data points at T − 1, T,
and T þ 1. In Fig. 4 we plot the effective slopes for the
three different operator combinations. The horizontal lines
with error bands give our final fitting results. For each
operator combination we get good plateaus starting
from T ¼ 7.
We have also tried different fitting ranges to see if our

results depend sensitively on these choices. We varied two
parameters: the lower limit on the linear fitting range Tmin
and the minimum separation between the kaon sources
and weak Hamiltonians Δmin. We first fixed ΔK ¼ 6 and
varied Tmin from 7 to 9. The results are given in Table I.
While the central value of the fitting results is quite stable,
the errors are sensitive to the choice of Tmin, which is
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FIG. 3 (color online). Integrated correlators for the three
products of operators Q1Q1, Q1Q2, and Q2Q2. The three lines
give the linear fits to the data in the time interval ½7; 20�.
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products of operators Q1Q1, Q1Q2, and Q2Q2.
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caused by the disconnected diagrams. In Table II, we give
the results for fixed Tmin ¼ 7 but ΔK varying from 6 to 8.
Both the central values and the errors are very stable,
suggesting that a separation of 6 is large enough to suppress
excited kaon states.
To check the calculation and refine our strategy for

treating the exponentially growing single pion and vacuum
contributions, we have varied the coefficient of the s̄γ5d
term described above and introduced the similar s̄d
operator. Each operator is a total divergence and when
added toHW should not changeΔMK . In fact,ΔMK did not
change within errors as the coefficient of s̄d was varied. We
omit this term, since this gives the smallest statistical error.
In contrast, ΔMK is very sensitive to s̄γ5d. If this term is
omitted, the resulting exponentially growing vacuum con-
tribution is 2 orders of magnitude larger than the previous
linear term—too large to be accurately subtracted. Thus, we
must use the s̄γ5d term to remove the vacuum intermediate
state at the beginning.
In our previous work [10], only the first two types of

diagrams were included in the calculation. We can now
determine the importance of these terms in our complete
result. The contributions of the type 1 and 2 diagrams have
small statistical errors, and the coefficient of T can be
accurately determined from a linear fit using Tmin ¼ 12. In
Table III, we give the contribution to the three operator
products from the type 1 and type 2 diagrams alone as well
as the complete result. ΔMK decreases by approximately a
factor of 2 when the complete result is obtained, showing
that there is large cancellation between the type 1 and 2
and the type 3 and 4 diagrams. Since the type 3, “double
penguin” graphs contribute less than 10% to the final result,
we find an unusually large contribution from the discon-
nected type 4 diagrams. This is a surprisingly large failure
of the “OZI suppression” [16], naively expected for these
disconnected diagrams.
Conclusions and outlook.—We have carried out the first

complete lattice QCD calculation of ΔMK. However, our
result is for a case of unphysical kinematics with pion,
kaon, and charmed quark masses of 330, 575, and
949 MeV respectively, each quite different from their
physical values of 135, 495, and 1100 MeV. Our result is

ΔMK ¼ 3.19ð41Þð96Þ × 10−12 MeV: ð6Þ

Here, the first error is statistical and the second an estimate
of largest systematic error, the discretization error which
results from including a 949 MeV charm quark in a
calculation using an inverse lattice spacing of
1=a ¼ 1.73 GeV. This 30% estimate for the discretization
error can be obtained either by simple power counting,
ðmcaÞ2 ¼ 0.30, or from the failure of the calculated energy
of the ηc meson to satisfy the relativistic dispersion relation.
We have found ðE2

ηcðpÞ − p2Þ=p2 ¼ 0.740ð3Þ instead of
1.0 when evaluated at p ¼ 2π=L.
Our result for ΔMK agrees well with the experimental

value of 3.483ð6Þ × 10−12 MeV. However, since we are not
using physical kinematics, this agreement could easily be
fortuitous. We emphasize that the objective of this first
complete calculation is not a physical standard model result
for ΔMK that should be compared with experiment but,
instead, a demonstration that such a complete calculation is
possible with controlled statistical errors.
To perform a calculation with physical kinematics and

controlled systematic errors, two difficulties must be over-
come. First, we need to perform the calculation on a four-
flavor lattice ensemble with two or more smaller lattice
spacings. This would remove the difficult-to-estimate error
associated with quenching the charm quark and allow the
Oðm2

ca2Þ discretization errors to be removed. Second, we
must perform a finite-volume correction associated with
π − π rescattering, which will be needed for physical
kinematics, when the two-pion threshold lies below the
kaon mass. In this case, ΔMK in infinite volume contains
the principal part of the integral over the two-pion relative
momentum, which can be substantially different from a
finite-volume momentum sum. A generalization of the
Lellouch-Luscher method has been devised to correct this
potentially large finite-volume effect [8], and a more
general method has been presented in Ref. [17]. Note, in
future physical calculations with L ≈ 6 fm, there will be

TABLE I. Results for the mass difference from each of the three
operator products for different choices of Tmin but with ΔK fixed
at 6. All the masses are in units of 10−12 MeV.

ΔK Tmin Q1Q1 Q1Q2 Q2Q2 ΔMK

7 0.68(10) −0.18ð18Þ 2.69(19) 3.19(41)
6 8 0.68(10) −0.11ð20Þ 2.85(24) 3.42(48)

9 0.68(11) −0.18ð25Þ 2.69(34) 3.18(63)

TABLE II. Fitting results for the mass difference from each of
the three operator products for different choices of ΔK but with
Tmin ¼ 7. All the masses are in units of 10−12 MeV.

Tmin ΔK Q1Q1 Q1Q2 Q2Q2 ΔMK

6 0.68(10) −0.18ð18Þ 2.69(19) 3.19(41)
7 7 0.68(10) −0.20ð18Þ 2.64(19) 3.13(41)

8 0.67(10) −0.19ð18Þ 2.61(19) 3.09(41)

TABLE III. Comparison of mass difference from type 1 and 2
diagrams only with that from all diagrams. All the numbers here
are in units of 10−12 MeV.

Diagrams Q1Q1 Q1Q2 Q2Q2 ΔMK

Type 1,2 1.479(79) 1.567(36) 3.677(52) 6.723(90)
All 0.68(10) −0.18ð18Þ 2.69(19) 3.19(41)
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only one such two-pion state with energy well below MK
contributing to ΔMK on the few-percent level.
Similar techniques can be used to determine the long-

distance contribution to ϵK . However, the calculation
of ϵK involves two additional complexities described in
Appendix A of Ref. [10]. First, we must introduce new
QCD penguin operators representing top quark effects.
Second, an overall logarithmic divergence must be
removed from the lattice calculation using nonperturbative
methods. In summary, a full calculation of ΔMK and ϵK
including their long-distance contributions should be
accessible to lattice QCD with controlled systematic errors
within a few years, substantially increasing the importance
of these quantities in the search for new phenomena beyond
the standard model.

We thank our RBC and UKQCD colleagues for many
valuable suggestions and encouragement and Guido
Martinelli for helpful discussions. These results were
obtained using the RIKEN BNL Research Center BG/Q
computers at the Brookhaven National Laboratory. N. C.
and J. Y. were supported in part by U.S. DOE Grant
No. DE-FG02-92ER40699, C. T. S. by STFC Grant
No. ST/G000557/1, T. I. and A. S. by U.S. DOE
Contract No. DE-AC02-98CH10886, and T. I. also by
JSPS Grants No. 22540301 and No. 23105715.

[1] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[2] R. Mohapatra, J. S. Rao, and R. Marshak, Phys. Rev. 171,
1502 (1968).

[3] S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2,
1285 (1970).

[4] M. Gaillard and B.W. Lee, Phys. Rev. D 10, 897 (1974).
[5] J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801

(2012).
[6] J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Lett.

135B, 481 (1984).
[7] A. J. Buras, D. Guadagnoli, and G. Isidori, Phys. Lett. B

688, 309 (2010).
[8] N. H. Christ (RBC and UKQCD Collaborations), Proc. Sci.,

LATTICE2010 (2010) 300.
[9] N. H. Christ, Proc. Sci., LATTICE2011 (2011) 277

[arXiv:1201.2065].
[10] N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni, and

J. Yu (RBC and UKQCD Collaborations), Phys. Rev. D 88,
014508 (2013).

[11] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and
A. Vladikas, Nucl. Phys. B445, 81 (1995).

[12] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev.
Mod. Phys. 68, 1125 (1996).

[13] C. Lehner and C. Sturm, Phys. Rev. D 84, 014001
(2011).

[14] C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D
78, 114509 (2008).

[15] Y. Aoki et al. (RBC Collaboration and UKQCD Collabo-
ration), Phys. Rev. D 83, 074508 (2011).

[16] G. Zweig, Report No. CERN-TH-412, 1964 (unpublished);
S. Okubo, Phys. Lett. 5, 165 (1963); J. Iizuka, Prog. Theor.
Phys. Suppl. 37, 21 (1966).

[17] N. H. Christ, G. Martinelli, and C. T. Sachrajda, Proc. Sci.,
LATTICE2013 (2014) 399 [arXiv:1401.1362].

PRL 113, 112003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 SEPTEMBER 2014

112003-5

http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRev.171.1502
http://dx.doi.org/10.1103/PhysRev.171.1502
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1103/PhysRevD.10.897
http://dx.doi.org/10.1103/PhysRevLett.108.121801
http://dx.doi.org/10.1103/PhysRevLett.108.121801
http://dx.doi.org/10.1016/0370-2693(84)90320-4
http://dx.doi.org/10.1016/0370-2693(84)90320-4
http://dx.doi.org/10.1016/j.physletb.2010.04.017
http://dx.doi.org/10.1016/j.physletb.2010.04.017
http://arXiv.org/abs/1201.2065
http://dx.doi.org/10.1103/PhysRevD.88.014508
http://dx.doi.org/10.1103/PhysRevD.88.014508
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/PhysRevD.84.014001
http://dx.doi.org/10.1103/PhysRevD.84.014001
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://dx.doi.org/10.1103/PhysRevD.83.074508
http://dx.doi.org/10.1016/S0375-9601(63)92548-9
http://dx.doi.org/10.1143/PTPS.37.21
http://dx.doi.org/10.1143/PTPS.37.21
http://arXiv.org/abs/1401.1362

