
Supersymmetry from Typicality: TeV-Scale Gauginos
and PeV-Scale Squarks and Sleptons

Yasunori Nomura and Satoshi Shirai
Berkeley Center for Theoretical Physics, Department of Physics, University of California,

Berkeley, California 94720, USA and Theoretical Physics Group, Lawrence Berkeley National Laboratory,
Berkeley, California 94720, USA

(Received 18 July 2014; published 8 September 2014)

We argue that under a set of simple assumptions the multiverse leads to low-energy supersymmetry with
the spectrum often called spread or minisplit supersymmetry: the gauginos are in the TeV region with the
other superpartners 2 or 3 orders of magnitude heavier. We present a particularly simple realization of
supersymmetric grand unified theory using this idea.

DOI: 10.1103/PhysRevLett.113.111801 PACS numbers: 12.60.Jv, 11.25.Wx, 98.80.Cq

Introduction.—Supersymmetry is an elegant extension
of spacetime symmetry, which arises naturally in string
theory—the leading candidate for the fundamental theory
of quantum gravity. A striking property of supersymmetry
is its high capability to control quantum corrections; in
particular, it can protect the mass of a scalar field, such as
the Higgs field, which has sizable nonderivative inter-
actions. This property was used to argue that the super-
symmetric partners of the standard model particles are
expected at the weak scale: the well-known naturalness
argument [1]. On the other hand, the Large Hadron Collider
(LHC) experiment has not seen any sign of superpartners so
far, which is beginning to threaten this argument [2].
The plethora of string theory vacua [3] suggests that the

naive naturalness argument should be modified. Because of
the eternal nature of inflation [4], all these vacua are expected
to be physically populated, leading to the picture of the
multiverse (or quantum many universes [5]). In this picture,
our Universe is one of the many universes in which low-
energy physical laws take different forms, and the natural-
ness argument is replaced with the typicality argument [6]:
we are typical observers among all the observers in the
multiverse. Specifically, the probability that physical param-
eters xi (i ¼ 1; 2;…) are observed between xi and xi þ dxi
is given by PðfxigÞdfxig with

PðfxigÞ ∝
Z

dfyjgfðfxig; fyjgÞnðfxig; fyjgÞ; ð1Þ

where yj (j ¼ 1; 2;…) are parameters other than xi which
vary independently of xi ’s; f is the a priori distribution
function determined by the statistics of the landscape
of vacua and their population dynamics, while n is the
anthropic weighting factor representing the probability of
finding observers for a given fxi; yjg. As is well known,
this potentially allows us to understand the smallness of the
cosmological constant (or dark energy) observed in our
Universe [7,8].

In this Letter, we consider what Eq. (1) implies for the
masses of superpartners. (For earlier studies, see, e.g.,
[9,10].) We argue that under a set of simple assumptions
the multiverse leads to the spectrum often called spread or
minisplit supersymmetry, which has attracted renewed
interest recently [11–15]: the gauginos are in the TeV
region with the other superpartners 2 or 3 orders of
magnitude heavier. (For earlier work, see [16–19].) We
find it encouraging that the typicality (or refined natural-
ness) argument, suggested by the fundamental theory, can
lead—under rather simple assumptions—to a superpartner
spectrum that does not have tension with the LHC results
so far while allowing the possibility for future discovery.
Note that this spectrum preserves the successful prediction
of supersymmetric gauge coupling unification, and yet does
not suffer from (or at least highly ameliorates) problems
associated with low energy supersymmetry, such as the
supersymmetric flavor and CP problems and the cosmo-
logical gravitino problem.
Throughout the Letter, we assume that the electroweak

scale is anthropically selected in the multiverse. While the
physical effects that are responsible for this selection are
not fully understood, we at least know that changing it by a
factor of a few leads to drastic changes of the Universe [20].
We therefore take

nðfxig; fyjgÞ ∝ δðv − vobsÞ; ð2Þ

in Eq. (1), and see what distribution of the superpartner
mass scale Pð ~m ∈ fxigÞ is obtained. Here, v is the vacuum
expectation value (VEV) of the standard model Higgs field
calculated in terms of parameters fxi; yjg, and vobs ≃
174 GeV is the observed value (in units of some mass
scale that is fixed in the analysis). In our analysis, we vary
essentially only parameters directly relevant for our ques-
tion: the overall supersymmetry breaking mass scale ~m, the
supersymmetric Higgs mass μ, and the VEV of the super-
potential W0, which is needed to cancel the cosmological
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constant. We do not expect, however, that our basic
conclusion is sensitive to this restriction.
A key element that characterizes our scenario is the

assumption that the supersymmetric Higgs mass term (the μ
term)—which is the only relevant supersymmetric operator
in the R-parity conserving minimal supersymmetric stan-
dard model (MSSM)—is not protected by any artificial
symmetry. This implies that the theoretically natural size
of μ is of OðM�Þ, where M� is the cutoff scale of the
MSSM, and μ takes a value close to ~m only because of the
anthropic selection of the weak scale. This provides a
simple environmental solution to the μ problem. Together
with the assumptions that supersymmetry is broken
dynamically and that the supersymmetry breaking field
is not a singlet, we find that the claimed spectrum is
obtained after applying all the selection effects, especially
that associated with the abundance of dark matter. This
basic argument will be presented in the next section.
A particularly interesting realization of our scenario is

obtained in the context of the minimal supersymmetric grand
unified theory (GUT) [21]. In this theory, a μ parameter
much smaller than the unified scale is obtained only as a
result of a fine cancellation between different contributions,
so that the setup relevant for our scenario is realized
automatically. Despite the minimality of the model, there
is no problem of doublet-triplet splitting or unacceptably fast
dimension-5 proton decay. The precision of gauge coupling
unification is also improved compared with conventional
weak scale supersymmetry. This, therefore, provides one of
the most attractive realizations of supersymmetric GUT.
At the end of this Letter, we also comment on the case in

which the supersymmetry breaking field is a singlet. In this
case, the superpartner masses can be at a high-energy scale
with the VEVs of the two Higgs doublets being almost
equal. This allows for realizing the high scale supersym-
metry scenario discussed in Ref. [22].
Basic argument.—We postulate that in the landscape of

possible theories in the multiverse, probabilities relevant
for observers are dominated by the branch having the
following properties:
(a) Low energy theory below some high scale M� is the

MSSM with R-parity conservation (possibly with the QCD
axion supermultiplet to solve the strong CP problem). We
are agnostic about the precise nature of the scale M� here,
except that we assume it is not many orders of magnitude
smaller than the reduced Planck scale MPl. Later we will
consider the case in which M� is identified as the
unification scale of supersymmetric GUT.
(b) Supersymmetry is broken dynamically as a result of

dimensional transmutation associated with some hidden
sector gauge group so that ~m ∝ e−8π

2=cg2 [23], where g and
c are the hidden sector gauge coupling and an Oð1Þ
coefficient, respectively.
(c) The superfield X responsible for supersymmetry

breaking, hXjθ2i ¼ FX, is not a singlet. This prohibits
the terms ½XHuHd�θ2 and ½XWαWα�θ2 to appear in the

Lagrangian at tree level, where Hu;d and Wα represent
the two Higgs doublet and gauge strength superfields of the
MSSM, respectively.
In addition to these somewhat “standard” assumptions,

we also postulate that the branch in the landscape domi-
nating the probabilities has the property:
(d) There is no “artificial” symmetry belowM� controlling

the size of operators in the MSSM (except for approximate,
and perhaps accidental, flavor symmetries associatedwith the
smallness of the Yukawa couplings). In particular, there is no
approximate global symmetry that dictates the values ofμ and
W0, such as the Peccei-Quinn symmetryHu;d → eiαHu;d,CP
symmetry, or a continuous R symmetry.
As we will see, this implies that the μ problem is solved

by the anthropic selection associated with electroweak
symmetry breaking. In the fundamental picture in the
landscape, this corresponds to postulating that having a
theoretical mechanism of suppressing the μ term “costs”
more than the fine-tuning needed to make jμj small to
obtain acceptable electroweak symmetry breaking.
The postulate (c) above implies that at the leading order,

supersymmetry breaking masses in the MSSM sector
arise from operators of the form ½X†XΦ†Φ=Λ2�θ4 and
½X†XHuHd=Λ2�θ4 , where Φ represents the MSSM matter
and Higgs fields, as well as from tree-level supergravity
effects. This yields

m2
~f;Hu;Hd

¼ c ~f;Hu;Hd
~m2; b ¼ cb ~m2 − μm3=2; ð3Þ

where ~m≡ jFX=Λj, m3=2 ¼ FX=
ffiffiffi
3

p
MPl is the gravitino

mass, and m2
~f;Hu;Hd

represent the (nonholomorphic) super-

symmetry breaking squared masses for the sfermion and
Higgs fields while b is the holomorphic supersymmetry
breaking Higgs mass squared. c ~f;Hu;Hd;b

are coefficients,
which we take to scan for values of order unity in the
landscape, and Λ is the mediation scale of supersymmetry
breaking, which we take to be roughly of the order of—e.g.
within an order of magnitude of—the reduced Planck
scale: Λ ∼MPl.
We now discuss the probability distribution of ~m, μ, and

W0 in this setup. With the assumption in (b), it is reasonable
to expect that the a priori distribution of ~m is approximately
flat in logarithm: fd ~m ∝ d ln ~m. On the other hand, the
assumption in (d) implies that the distribution of μ is given
by fdμ ∝ dReμdImμ ∝ jμjdjμjd argðμÞ for jμj≲M�, and
similarly for W0. We thus take fxig ¼ ~m and fyjg ¼
fjμj; jW0j; argðμÞ; argðW0Þ; c ~f;Hu;Hd

; cbg with

f ∝
1

~m
jμjjW0j; ð4Þ

and study what values of these parameters are selected by
anthropic conditions. In our analysis, we ignore possible
variations of all the other parameters of the theory, but we
do not expect that our basic conclusion is overturned when
the full variations are performed with appropriate anthropic
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conditions. This approach is analogous to that adopted
in the original argument for the cosmological constant
in Ref. [7].
Let us first isolate the selection effects from the weak

scale and the cosmological constant by writing

n ≈ δðv − vobsÞθðρΛ;max − jρΛjÞn̂ð ~m; μÞ; ð5Þ

where v and ρΛ are the values of the Higgs VEV and the
vacuum energy density calculated in terms of ~m, μ, andW0;
ρΛ;max ¼ jγρΛ;obsj is the anthropic upper bound on the value
of ρΛ, which we have taken symmetric around ρΛ ¼ 0 for
simplicity, and γ is a constant not too far from order unity.
We expect that the residual anthropic weighting factor, n̂,
does not depend strongly on the values of W0 or c ~f;Hu;Hd;b

in the relevant parameter region, which we assume to be
the case.
By integrating over W0 in Eq. (1), using the expression

ρΛ ¼ jFXj2 − 3jW0j2=M2
Pl with jFXj ¼ ~mΛ, we obtain

Pð ~mÞ ∝
Z

djμjd argðμÞdfcig
1

~m
jμjδðv − vobsÞn̂ð ~m; μÞ; ð6Þ

where fcig≡ c ~f;Hu;Hd;b
, and v depends on ~m, μ, and fcig.

An important point is that the integration of W0 does not
provide an extra probability bias for ~m, jμj, argðμÞ, or fcig
[10]—the effective a priori distribution function for these
parameters is still given by feff ∝ jμj= ~m. The value of W0

is selected to be jW0j ¼ jFXjMPl=
ffiffiffi
3

p
with the phase,

argðW0Þ, unconstrained. This leads to the gravitino mass
roughly comparable to the sfermion masses,

jm3=2j ∼ ~m: ð7Þ
In fact, we may naturally expect that Λ≲MPl, so that
jm3=2j is comparable to or somewhat (e.g., up to an order of
magnitude) smaller than ~m.
The selection from electroweak symmetry breaking acts

on the mass-squared matrix of the doublet Higgs bosons

M2
H ¼

 jμj2 þm2
Hu

b

b� jμj2 þm2
Hd

!
; ð8Þ

where m2
Hu;d

≈Oð ~m2Þ and jbj ≈Oðmaxf ~m2; jμj ~mgÞ. It
requires the smallest eigenvalue of M2

H to be ≈ − v2obs.
For ~m ≪ vobs, it is not possible to satisfy this requirement.
For ~m≳ vobs, on the other hand, the requirement can be
met for some values of fcig if jμj ≲ ~m, while a value of jμj
much larger than ~m makes the eigenvalues of M2

H both
positive regardless of fcig. This therefore selects the value
of jμj to be

jμj ≈ ~m; ð9Þ
since the probability of having jμj ≪ ~m is suppressed by
the fact that feff ∝ jμj. More explicitly, for a fixed ~m, the
probability distribution for jμj is given roughly by

Pðjμj; ~mÞdjμj ∝ jμjθð ~m − jμjÞdjμj. We thus find that by
integrating over jμj, argðμÞ, and fcig in Eq. (6), we obtain

Pð ~mÞd ~m ∝
�
0 for ~m≲ vobs;

neffð ~mÞd ln ~m for ~m≳ vobs;
ð10Þ

where neffð ~mÞ≡ n̂ð ~m; μ ¼ ~mÞ, and we have assumed that
the anthropic weighting factor n̂ does not depend strongly
on the precise value of μ. Interestingly, for ~m≳ vobs, the
preference to smaller values of ~m by electroweak fine-
tuning, P ∝ v2obs= ~m

2, is exactly canceled by the a priori
distribution of μ, which through Eq. (9) prefers larger
values of ~m, i.e. P ∝ jμjdjμj ∼ ~m2d ln ~m. There is, there-
fore, no net preference for the scale of superpartner masses
before a further anthropic selection, neffð ~mÞ, is applied.
What function should we consider for neffð ~mÞ? Note that

with Eqs. (7) and (9), the pattern of the spectrum of the
superpartners and the MSSM Higgs bosons (H0, H�, and
A0) is fixed in terms of the single mass parameter ~m: in
order of decreasing masses

M ~f ≈M ~h ≈ ~m; MH0;�;A0 ≈ ~m; ð11Þ

where ~h represents the Higgsinos,

M ~G ¼ ϵ ~m; ϵ ≈Oð0.1–1Þ; ð12Þ

where ~G is the gravitino, and the lightest set of super-
partners are the gauginos with masses

Ma ¼
bag2a
16π2

m3=2 þ
dag2a
16π2

L; ð13Þ

(a ¼ 1; 2; 3), which are generated by anomaly mediation
[16,24] (the first term) and Higgsino-Higgs loops
(the second term). Here, ga are the standard model
gauge couplings [in the SU(5) normalization for U(1)
hypercharge], ðb1; b2; b3Þ ¼ ð33=5; 1;−3Þ, ðd1; d2; d3Þ ¼
ð3=5; 1; 0Þ, and

L ≈O( ~m sinð2βÞ); ð14Þ

where tan β≡ hHui=hHdi. Our question is, what environ-
mental effects do we expect when we vary ~m keeping the
relations in Eqs. (7) and (9)?
In general, there could be many subtle effects associated

with a variation of ~m. For example, for fixed high-energy
gauge and Yukawa couplings, varying ~m leads to changes
of low-energy parameters such as the QCD scale and
the quark and lepton masses. These changes, however, may
be compensated by the corresponding variations of the
high-energy parameters, and their full analysis will require
detailed knowledge of the statistical properties of the
landscape beyond the scope of this Letter. Below, we will
focus on what is arguably the dominant environmental
effect of varying ~m: the change of the relic abundance of
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the lightest supersymmetric particle (LSP) contributing to
dark matter of the Universe.
As discussed in Ref. [11], this effect leads to a large

“forbidden window” for the value of ~m, in which the LSP
relic abundance far exceeds the observed dark matter
abundance and neffð ~mÞ ≈ 0. While the precise nature of
the anthropic upper bound on the dark matter abundance is
not well understood, we expect that there is some upper
bound. This upper bound may not be sharp or close to the
observed value (for discussions on possible upper bounds,
see Ref. [25]), but it still excludes a large region of ~m between
some values ~m1 and ~m2. For the spectrum in Eqs. (11)–(13),
the LSP is the wino in most of the parameter space, whose
relic abundance has both thermal and nonthermal contribu-
tions; see Ref. [14] for a detailed analysis. [If ϵ in Eq. (12)
is small, the second term in Eq. (13) may dominate and the
bino can be the LSP; the allowed dark matter window in this
case is small [14].] The probability distribution for the
superpartner mass scale ~m is then given by Eq. (10) as

Pð ~mÞd ~m ≈
�
Cd ln ~m for vobs ≲ ~m≲ ~m1; ~m≳ ~m2;

0 for other values of ~m;
ð15Þ

where C is the normalization constant. A reasonable (though
highly uncertain) estimate for ~m1 is given by

~m1 ≈Oð106–108 GeVÞ; ð16Þ

and ~m2 is given by the value of ~m in which the LSP becomes
sufficiently heavier than the reheating temperature after
inflation TR, which we assume to take some high scale
value, e.g. TR ≳ 109 GeV (possibly selected by the require-
ment of baryogenesis). The resulting distribution is depicted
schematically in Fig. 1.
With Eq. (15), it is easy to imagine that ~m is selected

randomly in the logarithmic scale in the region between
vobs ≈Oð100 GeVÞ and ~m1. In particular, this can lead to
the spread or minisplit type spectrum in Eqs. (11)–(13) with

~m ∼ jm3=2j ≈ Oð10–1000 TeVÞ; ð17Þ

as a typical spectrum one observes in the multiverse.
The phenomenology of this spectrum is discussed in detail
in Ref. [14] and references therein. In particular, the
observed Higgs boson mass of mh0 ≃ 126 GeV can be
easily accommodated, and dark matter can be composed of
a mixture of the wino and the QCD axion (and possibly
other components as well) with some unknown ratio, which
depends on the statistical distribution of the axion decay
constant, among other things.
Minimal GUT realization.—A particularly attractive

and solid realization of our scenario is obtained in the
context of the minimal supersymmetric SU(5) GUT [21].
In this theory, the SU(5) symmetry is broken by the VEVof
Σð24Þ. The superpotential relevant for the GUT breaking is

WΣ ¼ mΣ

2
trΣ2 þ λΣ

3
trΣ3; ð18Þ

leading to hΣi ¼ ðmΣ=λΣÞdiagð2; 2; 2;−3;−3Þ. For a non-
singlet supersymmetry breaking field X, the shift of this
vacuum due to supersymmetry breaking effects is small.
The superpotential for the Higgs fields, H5 ¼ ðHC;HuÞ
and H̄5 ¼ ðH̄C;HdÞ, is given by

WH ¼ H̄5ðmH þ λHΣÞH5: ð19Þ

With the Σ VEV, this leads to the supersymmetric masses
for the MSSM Higgs doublets Hu;d and their GUT partners
HC, H̄C,

μ ¼ mH − 3
λHmΣ

λΣ
; μC ¼ mH þ 2

λHmΣ

λΣ
: ð20Þ

Since both terms in the right-hand side are of the order
of the unification scale Munif ≈Oð1016 GeVÞ, having
jμj ≪ Munif requires a large fine-tuning of parameters.
With this fine-tuning, μC is of order Munif.
The situation described above is exactly the one needed

to realize our scenario. In fact, we may apply the argument
in the previous section without modification by identifying
M� as the unification scale Munif . This realization has
several virtues from the GUT point of view as well. First,
the notorious doublet-triplet splitting problem is automati-
cally “solved” because of the environmental selection for
electroweak symmetry breaking. Second, the precision of
gauge coupling unification is also improved with the
superpartner spectrum discussed here [26], compared with
the case in conventional weak scale supersymmetry. The
dangerous dimension-5 proton decay caused by exchange
of HC, H̄C is also suppressed because of the large sfermion
masses, if the 1–3 element of the doublet squark mass-
squared matrix is sufficiently small [27]. (This is ensured if
the low-energy theory has an appropriate flavor structure
analogous to that in the Yukawa couplings, which also
suppresses possible contributions from cutoff-scale sup-
pressed tree-level operators [28].) This scenario, therefore,

FIG. 1 (color online). A schematic depiction for the probability
distribution of ~m. The red solid (green dashed) line represents
the distribution before (after) the dark matter condition,
neffð ~mÞ, is imposed. Here, we have assumed TR ¼ 109 GeV
and that the anthropic upper bound of the dark matter abundance
is at ΩDMh2 ¼ 100.
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provides one of the most simple and attractive realizations
of supersymmetric GUT.
Comment on singlet X.—We finally comment on the case

in which the assumption (c) is modified: the supersym-
metry breaking field X is a singlet. In this case, the direct
coupling of X to the Higgs fields W ⊃ −λXHuHd is
allowed, yielding jbj ¼ jλjΛ ~m. By integrating over λ ∈
fyjg in the expression in Eq. (1) using the electroweak
symmetry breaking condition δðv − vobsÞ, we find that the
probability in the ln ~m- ln jμj plane is peaked at jμj2=Λ ~m≈
jλjmax; more explicitly,

Pðln ~m; ln jμjÞ ∝ jμj4
ðΛ ~mÞ2 θ

�
jλjmax −

jμj2
Λ ~m

�
n̂ð ~m; jμjÞ; ð21Þ

where jλjmax is the largest value of jλj in the landscape,
which we expect is not too far from Oð1Þ, and n̂ð ~m; jμjÞ is
the anthropic weighting factor without including that for
electroweak symmetry breaking.
An important element in n̂ð ~m; jμjÞ arises from the fact

that for jbj≃ jμj2 ≫ ~m2, a Higgs loop makes the mass
squared for the top squark negative m2

~t ∼ −ðy2t =16π2Þjμj2.
Assuming that such a region, ~m2 ≲ 10−ð2–3Þjμj2, is envi-
ronmentally disallowed, we find

~m≳ 10−ð2–3ÞjλjmaxΛ; ð22Þ

so we expect that the superpartner mass scale is high.
Moreover, we find that

tan β − 1 ≈O

�
~m2

jμj2
�
≈O

�
~m

jλjmaxΛ

�
≪ 1; ð23Þ

in most of the selected parameter space. This, therefore,
provides a simple realization of the high scale supersym-
metry scenario discussed in Ref. [22] withmh0 ≃ 126 GeV.
A more detailed analysis of the singlet X case will be
presented elsewhere.
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