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We demonstrate a coupled cavity realization of a Bose-Hubbard dimer to achieve quantum-limited
amplification and to generate frequency entangled microwave fields with squeezing parameters well below
−12 dB. In contrast to previous implementations of parametric amplifiers, our dimer can be operated both
as a degenerate and as a nondegenerate amplifier. The large measured gain-bandwidth product of more than
250 MHz for the nondegenerate operation and the saturation at input photon numbers as high as 2000 per
μs are both expected to be improvable even further, while maintaining wide frequency tunability of about
2 GHz. Featuring flexible control over all relevant system parameters, the presented Bose-Hubbard dimer
based on lumped element circuits has significant potential as an elementary cell in nonlinear cavity arrays
for quantum simulations.
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The high level of control achievable over collections of
massive or massless particles, such as atoms, spins, or
photons, enables the detailed study of intricate many-body
phenomena in manmade quantum systems [1]. In this
context coupled nonlinear resonators both provide a viable
avenue for studying light-matter interactions and constitute
a generic building block for photonic quantum simulators
of strongly interacting systems [2–4]. Therefore, their
theoretical and experimental investigation is pursued in a
wide variety of physical settings such as photonic structures
[5,6], optomechanical systems [7–9], and superconducting
circuits [10–12]. The remarkable progress in quantum
science using microwave radiation has stimulated broad
interest in low noise amplification [13,14] and has lead to
the development of novel versatile amplifiers in recent
years [15–23]. Many of these implementations rely on
parametric processes in which the noise temperature of the
amplifier is solely limited by the radiation temperature of
the input fields, ultimately by the vacuum fluctuations [24].
In parametric amplification the presence of a signal
stimulates conversion processes from a pump field into
the signal field, while creating an additional idler field.
When signal and idler fields occupy the same mode, this is
referred to as degenerate parametric amplification, whereas
in nondegenerate amplifiers the signal and idler modes
are separated either spatially or in frequency [24]. While
degenerate parametric amplifiers [15] are often preferable
for the fast dispersive readout of qubits [25] in quantum
feedback protocols [26], nondegenerate amplification [19]
can be more practical for multiplexed readout [27], the
measurement of photon correlation functions [28], and
more general applications in which amplification is to be
independent of the phase of the signal relative to the pump.
The cavity dimer presented here can be operated in both
modes of amplification—degenerate and nondegenerate.

The underlying mechanism is not specific to superconduct-
ing circuits and may also be realized using mechanical,
optical, or atomic systems.
We consider a system described by two bosonic modes

aL and aR, which are coupled with hopping rate J and have
an on-site interaction strength U ¼ UL ¼ UR; see generic
representation in Fig. 1(a). In a frame rotating at the bare
cavity frequency ω0 ¼ ωL ¼ ωR the system is described by
the Bose-Hubbard-dimer Hamitonian [29]:

H=ℏ ¼ JðaLa†R þ aRa
†
LÞ þ

U
2
½ða†LÞ2a2L þ ða†RÞ2a2R�:

While the left mode (L) is coupled with rate κ to a
transmission line, the right mode (R) is only coupled
to the left mode. We consider the parameter regime
jUj ≪ J ≲ κ to achieve quantum-limited amplification.
We note that the design presented below allows us to
realize circuits in which any of the three rates may
dominate over the other two. Because of the hopping term
J the left and right modes hybridize and form symmetric
and antisymmetric eigenmodes, aþ and a−. The corre-
sponding eigenfrequencies are split by 2J ¼ ωþ − ω−
around the bare cavity frequency, ω0. A coherent drive
field αin applied to the dimer in combination with the
nonlinearity U shifts the effective resonance frequencies
to ~ω− and ~ωþ; see Fig. 1(b). The effect of finite detuning
ωL − ωR between the left and right mode and unequal
interaction strengths UL ≠ UR are considered in the
Supplemental Material [30].
We have calculated the phase diagram of the Bose-

Hubbard dimer when driven coherently at a detuning δ
from the bare cavity frequency ω0 using a semiclassical
approximation. For drive rates jαinj2 on the order of κ2=U,
the system undergoes a sharp transition from a regime with
one stable solution (S) into either a multistable region with
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multiple classical solutions (M) or a region with a unique but
parametrically unstable solution (P); see Fig. 1(c), Ref. [29],
and the Supplemental Material [30]. When driving the
dimer close to either one of the two redshifted eigenfre-
quencies ~ω− or ~ωþ, indicated by the blue dashed lines in
Fig. 1(c), the system behaves like a single nonlinear cavity
leaving the undriven mode idle. Close to the phase transition
into the multistable region (M), the finite on-site interaction
strength U stimulates the generation of signal-idler photon
pairs. Since both signal and idler fields occupy the same
mode, this is a degenerate parametric amplification process
[15]; see the schematic representation in Fig. 1(d). However,
when driving the dimer in between the two eigenfrequencies
~ω− and ~ωþ [red line in Fig. 1(b)], resulting in an equal
population of the symmetric and antisymmetric mode, we
observe a fundamentally different behavior. In this case we
approach the transition from the stable (S) into the para-
metrically instable region (P), near which quantum fluctua-
tions stimulate the generation of entangled photon pairs into
the symmetric and antisymmetric mode at a rate diverging
at the phase transition. When additional signal fields
are applied to the dimer, nondegenerate amplification is
expected at a large detuning on the order of 2J between
signal and idler modes [Fig. 1(e)].

We demonstrate the phenomena discussed above in a
circuit QED implementation of the Bose-Hubbard dimer
which we chose to refer to as a Josephson parametric dimer
(JPD). In the JPD, two interdigitated finger capacitors CL
and CR shunted by an array of superconducting quantum
interference devices (SQUIDs) form two lumped element
oscillators in which the SQUIDs act as inductors
[Fig. 2(a)]. The SQUID inductance, and with that the
resonance frequencies of the JPD circuit, is tuned by
applying an external magnetic field through a coil mounted
on the sample holder. The SQUID nonlinearity leads to
effective photon-photon interactions with a strength
U=2π ≈ −Ec=hM2 ≈ −80 kHz, which depends on the
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FIG. 1 (color online). (a) Optical frequency representation of
the Bose-Hubbard dimer, illustrated as two cavities each with on-
site interaction strength U and coupled with hopping rate J. The
left cavity emits into a transmission line at rate κ. (b) Mode
structure of the dimer and drive induced redshifts. See text for
details. (c) Calculated phase diagram of the dimer driven with a
coherent input field αin at detuning δ from the bare resonance
frequency ω0 for J ¼ 0.7κ and U < 0. The red line indicates
drive configurations with a vanishing field amplitude in the left
cavity. The dashed blue lines indicate redshifted frequencies,
~ω− and ~ωþ. (d) Driving the system at frequency ~ωþ (gray vertical
arrow) results in degenerate parametric amplification, with signal
gain Gs (red) and idler gain Gi (blue) both occupying the
symmetric mode. (e) Signal and idler gain become nondegenerate
when driving the system in between ~ωþ and ~ω−.
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FIG. 2 (color online). (a) False-color micrograph of the sample.
The interdigitated finger structures form the capacitors of two
coupled oscillators. An effective nonlinear inductance is realized
as an array of SQUIDs in each resonator, also shown enlarged.
(b) Simplified circuit diagram of the experimental setup. The
circuit is driven with a pump field at frequency ωp ¼ ω0 þ δ
through a −20 dB directional coupler, of which the second port is
used to interferometrically suppress the pump field reflected from
the sample by more than −60 dB. Input and output signal fields
are separated using a circulator. (c) Argument Arg½Γ� of the
measured (blue dots) and fitted (red line) reflection coefficient Γ
vs probe frequency. (d) Measured Arg½Γ� vs external magnetic
flux which is controlled by a voltage applied to a coil biasing
filter. The white dashed line indicates the data trace shown in (c).
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charging energy Ec ≈ e2=2CR and can be controlled by
varying the number of SQUIDsM in the array [31]. We set
a lower bound to the critical current of each SQUID by
using junctions with a ratio of Josephson energies given
by EJ;1=EJ;2 ≈ 1=3. This choice avoids an uncontrolled
increase in nonlinearity due to inhomogeneous coupling
of SQUIDs to the external magnetic field; see the
Supplemental Material for details [30]. The coupling rate
between the two resonators J ≈ CJω0=4CR is proportional
to the capacitance CJ. Cκ determines the coupling κ to the
input and output line. A circuit diagram of the JPD device
illustrating its operation as an amplifier is shown in
Fig. 2(b).
We have measured the argument of the reflection

coefficient Arg½Γ� of the JPD in linear response using a
weak test tone of frequency ω=2π. As expected, we find
two resonances, each leading to a phase shift of 2π in the
reflected signal [Fig. 2(c)]. By fitting the data to the model
obtained from input-output theory (Supplemental Material
[30]), we extract the parameters ðωL;ωR; κ; JÞ=2π ≈
ð7.8; 7.9; 0.32; 0.25Þ GHz for the bias point indicated by
the dashed white line in Fig. 2(d). By varying the external
magnetic field through the SQUID arrays, we tune both
modes simultaneously [Fig. 2(d)]. As desired, the left and
right modes are found to be sufficiently close to resonance
jωL − ωRj≲ J; κ over the entire tuning range.
To achieve degenerate amplification, we drive the JPD

with a coherent pump tone at frequencyωp=2π ¼ 7.98 GHz
close to the resonance frequency of the symmetricmode ~ωþ.
As expected, the measured signal and idler gains (red and
blue points) are to very good approximation described by
Lorentzian lines (black solid lines) for the two indicated
pump powers [Fig. 3(a)].
While the degenerate amplification process is the con-

ventional one in Josephson parametric amplifiers [15], we
observe nondegenerate parametric amplification when
driving the JPD in between the symmetric and antisym-
metric mode. In this case the symmetric and antisymmetric
modes of the JPD serve as signal and idler modes
[Figs. 3(b) and 3(c)]. When amplifying a signal at ωs=2π ¼
7.79 GHz [Fig. 3(c)], the idler field is far detuned from

the signal field at ωi=2π ¼ ð2ωp − ωsÞ=2π ¼ 7.41 GHz
[Fig. 3(b)] allowing for simple rejection from the detection
band for typical bandwidths of less than J as required for
phase preserving amplification. The splitting between
signal and idler gain maxima depends on both the pump
power and the pump frequency. Individual adjustment of
these parameters can therefore be used to independently
fine-tune the maximum gain and the peak position while
keeping the external magnetic flux constant. For the chosen
drive parameters, the gain curves are well described by
Lorentzian lines (black lines). In contrast to other imple-
mentations of nondegenerate parametric amplifiers [19],
the JPD emits the signal and the idler fields into the same
transmission line, which can therefore both be used for
amplification. Furthermore, the compact lumped element
design with its large participation ratio, and the use of
SQUID arrays improve the achievable bandwidth and
dynamic range [31] compared to existing nondegenerate
amplifiers and provide a wide tunability.
For the measurements shown in Fig. 3(c) we have

controlled the gain by varying the pump power. The fact
that we can reach gain values of more than 50 dB (not
shown) indicates that the amplifier is far from saturation
when operated at moderate gain. In fact, for samples with
larger κ=jUj, we have measured amplification with remark-
able dynamic range specified by a 1 dB compression point
at input signals of −110 dBm (2000 photons per μs) at a
gain of 20 dB, as well as gain-bandwidth products of more
than 250 MHz in the nondegenerate mode of operation.
Further improvements in the dynamic range are expected to
be straightforward to realize by increasing the number of
SQUIDs in the arrays, by using Josephson junctions with
even larger Josephson energy [32] and by increasing κ.
In addition we suggest that as an alternative to the designs
presented in Refs. [21,23] parametric amplifiers with well-
controllable broadband amplification could be realized by
extending the presented design to multicavity arrays.
In our experiments we probe the quantum nature of the

observed parametric conversion processes by leaving the
JPD input in the vacuum state and observing the creation of
entangled photon pairs. The two-mode squeezing spectrum

(a) (b) (c)

FIG. 3 (color online). (a) Measured signal (red) and idler gain (blue) vs frequency for two pump powers Pp ≈ f−75.9;−75.6g dBm
fitted to a Lorentzian (black lines) for degenerate operation. (b),(c) Measured idler GI and signal gain GS for a nondegenerate operation
together with Lorentzian fits (black lines) for drive powers Pp ≈ f−75.8;−75.4;−75:;−74.6g dBm.

PRL 113, 110502 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 SEPTEMBER 2014

110502-3



Sϕþ−ðΔÞ ∝ Var½e−iϕaΔ þ eiϕa†−Δ� (Supplemental Material
[30]) is a direct measure of this Einstein-Podolsky-
Rosen-type entanglement [33] and allows us to resolve
the asymmetric frequency dependence of squeezing corre-
lations. Here, aΔ (a−Δ) is the annihilation operator for
signal (idler) photons at detuning Δ (−Δ) from the pump
and ϕ is the phase of the pump relative to the local oscillator
used for detection. Depending on the phase ϕ we observe
noise squeezing (antisqueezing) below (above) the vacuum
limit. The measured squeezing spectra, which are obtained
after subtracting the calibrated detector noise, fit very
well to our theoretical model (Supplemental Material
[30]) and they accurately reproduce the spectral asymmetry
for intermediate LO phases, as shown on a logarithmic
scale relative to the vacuum level (0 dB) in Fig. 4(a). As a
reference we also show the noise level when the JPD is
turned off (gray points). The spectra also demonstrate that
measured squeezing and antisqueezing are almost perfectly
inversely proportional to each other. The value of the
squeezing spectrum evaluated at the detuning indicated
by the vertical dashed line in Fig. 4(a) shows the expected
sinusoidal dependence on the phase ϕ; see the fit to theory
(red line) in Fig. 4(b). The gain-dependent squeezing
reaches values down to below −12 dB (see inset) in a
bandwidth larger than 10 MHz which is, to the best of
our knowledge, the largest value reported so far for

superconducting circuits [15,34–36]. We attribute devia-
tions from the theoretically expected amount of squeezing
at higher gain values to slow drifts of the pump relative to
the local oscillator phase and slight depletion of the pump
field at higher gain values.
To further investigate the statistical properties of the

signal aþ and idler a− fields and their correlations we have
measured cumulants hhða†þÞnðaþÞmða†−Þkða−Þlii with order
(n, m, k, l) up to nþmþ kþ l ≤ 4. The cumulant repre-
sentation of correlators is particularly suitable to determine
how well the analyzed radiation fields are described by
ideal Gaussian states, since only the quadratic terms are
expected to be nonzero. For this experiment we have used
two detection channels to individually record the signal and
idler radiation each in a 4MHzband around their carrier freq-
uencies [34,37]. We have extracted the cumulants based on
histograms of the measured field quadratures (Supplemental
Material [30]). While the (1,1,0,0) and the (0,0,1,1) terms
describe the average quadrature fluctuations in the signal and
idler fields, respectively, the large (0,1,0,1) term demon-
strates the entanglement correlations between the two fields
[Fig. 4(c)]. Except for the second order terms, all higher order
cumulants vanish, as expected for an ideal Gaussian state.
The Gaussian property is an essential requirement, when
using this signal-idler entanglement as a resource in con-
tinuous variable quantum computation protocols [38]. This
property is also highly relevant when employing the JPD
for photon correlation measurements in which the statistical
properties of the amplified field are to be preserved.
Our measurements highlight the excellent performance

of the presented device and its potential to be broadly
used in cryogenic setups aiming at quantum limited
measurements—particularly in superconducting circuits.
In addition to its practical use as an amplifier, the presented
Bose-Hubbard dimer and its extension to larger arrays of
cavities may prove interesting as an unconventional single
photon source [39], for the study of Majorana modes in
parametrically coupled cavities [40], and, in general, for
experimental studies of nonequilibrium many-particle
physics in photonic systems.
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