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Many-body localization occurs in isolated quantum systems when Anderson localization persists in the
presence of finite interactions. Despite strong evidence for the existence of a many-body localization
transition, a reliable extraction of the critical disorder strength is difficult due to a large drift with system
size in the studied quantities. In this Letter, we explore two entanglement properties that are promising for
the study of the many-body localization transition: the variance of the half-chain entanglement entropy of
exact eigenstates and the long time change in entanglement after a local quench from an exact eigenstate.
We investigate these quantities in a disordered quantum Ising chain and use them to estimate the critical
disorder strength and its energy dependence. In addition, we analyze a spin-glass transition at large disorder
strength and provide evidence for it being a separate transition. We, thereby, give numerical support for a
recently proposed phase diagram of many-body localization with localization protected quantum order
[Huse et al., Phys. Rev. B 88, 014206 (2013)].
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The Anderson insulator is an ideal insulator in which
all single particle states are localized [1]. This localization
is due to quantum interference induced by elastic scattering
of random impurities. In the absence of interactions and
a coupling to a heat bath, the conductivity of such an
insulator is identically zero at any temperature or energy.
The fate of this insulating state when the particles interact
with each other is the topic of the emerging field of many-
body localization (MBL). Following the seminal work of
Basko et al. [2], it is generally believed that the insulating
phase is stable to weak interactions. This observation has
fundamental consequences for our understanding and
utilization of isolated quantum systems. First, since a
localized state cannot thermalize, it implies the break-
down of the eigenstate thermalization hypothesis [3–5] and,
thus, the emergence of statistical physics from quantum
mechanics. Second, MBL could allow for the realization of
topological and quantum order at finite energy densities by
localizing the excitations that otherwise would melt the
order [6–9]. The MBL phenomenon may also potentially
be realized in multicomponent systems, even in the absence
of disorder [10,11], and in systems weakly coupled to heat
baths [12].
A central concept in the phenomenology of MBL is that

of the many-body mobility edge [2]. Its existence implies
that there is a definite energy at which the qualitative
properties of the exact many-body eigenstates change:
below that energy the eigenstates are close to a product
state of localized single particle states; above, the eigen-
states are extended and thermal, i.e., they follow the
eigenstate thermalization hypothesis. The presence of the
many-body mobility edge does not contradict the identi-
cally zero conductivity of the many-body localized phase
at nonzero temperature, as it would in the noninteracting

case [2]. Rather, it suggests that the MBL transition is a
dynamical transition and not an equilibrium phase tran-
sition. In such a dynamical transition, the eigenstate
properties change in a similar way as the ground state
properties in conventional (quantum) phase transitions, as
some control parameter, which for an MBL phase transition
includes disorder strength and energy, is varied across its
critical value [6].
Much insight into the nature of the many-body localized

phase has been obtained from numerical studies of one-
dimensional (1D) systems [13–22] and, in particular, from
studies of entanglement [7,23–28]. In the insulating phase,
the exact eigenstates have relatively small entanglement
and the entanglement entropy satisfies an area law; i.e., the
von Neuman entropy of the reduced density matrix of a
subsystem scales with the subsystem’s surface area [29]. In
the thermal phase, the entanglement is extensive and
satisfies a volume law. Since the entanglement entropy
is equivalent to the thermal entropy in a thermal state, its
nonextensive nature in the localized phase reflects the
absence of thermalization. In contrast, low entanglement
states that are not eigenstates generically dephase logarith-
mically in time towards extensive but subthermal entangle-
ment, even deep in the localized phase [23–27].
The drastically different entanglement properties of the

localized and the thermal phase allow for an accurate
determination of the MBL transition. To clarify this state-
ment, consider the half-chain entanglement entropy of an
exact eigenstate of a 1D system at a fixed energy density. In
the vicinity of the MBL transition, small changes in either
the energy density or the disorder realization can trigger a
change from localized (area law) to a metallic state (volume
law). The variance of the entanglement entropy over
an energy interval or disorder ensembles will, therefore,
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diverge with system size, signaling the MBL transition. In a
similar spirit, the MBL transition can be observed in the
evolution of the entanglement entropy after a local quench
from an exact eigenstate [10]. That is, suppose we prepare
the system in one of its eigenstates just below the mobility
edge and then perturb it locally. The perturbation produces
an uncertainty in the energy and the resulting state is a
linear combination of eigenstates above and below the
mobility edge. This results in a diverging increase in the
entanglement entropy as the state evolves from initially
having an area law to eventually having a volume law
entanglement.
In this Letter, we study the properties of all eigenstates of

a 1D Ising chain model of MBL using full exact diago-
nalization [30]. In particular, through the study of entan-
glement, we detect the MBL transition and obtain an
estimate of its energy dependence. In addition, similar to
Ref. [21], we demonstrate the development of spin-glass
(SG) order at large disorder strengths, with a transition that
is separated from the localization transition. The main
results of our calculations are summarized in the phase
diagram in Fig. 1 which agrees with that discussed
qualitatively in a recent insightful work by Huse et al. [6].
We now turn to the details of our study. We employ the

transverse field quantum Ising chain with disordered
couplings and a next-nearest neighbor Ising term,

H ¼ −
XL−1

i¼1

Jiσ
z
iσ

z
iþ1 þ J2

XL−2

i¼1

σziσ
z
iþ2 þ h

XL

i¼1

σxi ; ð1Þ

where σx and σz are Pauli matrices and L the number of
sites in the chain. The couplings Ji ¼ J þ δJi are random
and independent, with all δJi taken from a uniform random
distribution ½−δJ; δJ�. The Hamiltonian (1) has a global Z2

symmetry given by the parity operator P ¼ Q
L
i¼1 σ

x
i , with

eigenvalues �1.
When J2 ¼ δJ ¼ 0, the model reduces to the well known

quantum Ising chain in a transverse field. A quantum
critical point at h ¼ J separates a symmetry broken phase
with ferromagnetic order (h < J) from a paramagnetic
phase (h > J). Since MBL is concerned with all energies,
we are interested in the excited states, which, in the
ferromagnetic phase, are (gapped) domain walls between
different ferromagnetic domains. In the absence of disorder,
the domain walls form extended states, with a dispersion
proportional to h, and therefore, destroy the order at any
nonzero temperature (energy density above the ground
state). The model is one-dimensional, consequently any
bond disorder (δJ > 0) localizes the noninteracting domain
wall excitations and the system forms an Anderson insu-
lator. The next-nearest neighbor coupling J2 introduces a
repulsive interaction between domain walls on adjacent
bonds, and breaks the integrability of the model in the
absence of disorder. In this Letter, we are primarily
interested in the regime of repulsive interactions in the
ferromagnetic phase. For all the numerical results presented
in this Letter, we use the parameters J ¼ 1 and h=2 ¼
J2 ¼ 0.3. Our qualitative conclusions do not depend on the
exact values of these parameters.
At a fixed nonzero interaction strength, an MBL tran-

sition is expected at a finite critical disorder strength δJMBL
c ,

which generally depends on the energy density. An
intuitive schematic picture of the nature of the different
phases in terms of domain walls is given at the top of
Fig 1. In the thermal phase, domain walls are extended over
the whole system, while in the MBL phase, domain walls
are localized. Various approaches towards detecting the
MBL transition have been adopted [8,13–16], but only a
few have attempted a systematic finite size scaling analysis
[19,20,31], largely due to a significant drift of the studied
quantities with system size. We find the same problem with
the level spacing statistics in the current model (data not
shown) and, therefore, seek alternative quantities that allow
for an accurate determination of phase boundaries.
We start by studying the entanglement in the exact

eigenstates and focus on the half-chain entanglement
entropy S ¼ −TrLρ ln ρ of the reduced density matrix
ρ ¼ TrRjψihψ j, where the traces are over the left and right
half-chain Hilbert spaces, respectively. For each disorder
realization, we find the eigenstate jni with energy En
closest to a fixed energy E and, thereby, obtain a disorder
distribution of entanglement entropies. In Fig. 2(a), we plot

FIG. 1 (color online). Phase diagram of the Ising model
Eq. (1) in the h=2 ¼ J2 ¼ 0.3 plane with ϵ ¼ 2ðE − EminÞ=
ðEmax − EminÞ being the energy density relative to the total
bandwidth. The axes give the energy density above the ground
state and the disorder strength. The colored areas are guides to the
eye. The data are obtained from finite size scaling of entanglement
difference Eq. (2) after a local quench and the spin-glass order
parameter Eq. (4); only statistical error bars are given, see text. The
schematic on top of the phase diagram shows a caricature of the
spatial domain wall probability distribution in the different phases.
The thermal phase is characterized by extended domain walls, the
MBL paramagnetic phase by localized domain walls which are
created and removed in pairs (dashed), and the MBL spin glass by
localized nonoverlapping domain walls.
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the mean (left inset) and standard deviation of this
distribution, at an energy in the middle of the spectrum,
as a function of disorder strength. In the thermal phase at
weak disorder, the mean follows a volume law approaching
the value S ¼ ðL ln 2 − 1Þ=2 of a random state [32] indi-
cated by the dashed lines. With increasing disorder, the
average entanglement entropy decreases and eventually
saturates at S ¼ ln 2 deep in the localized phase. The reason
for this is that eigenstates become Schrödinger cat states
with definite parity that are a linear combination of the two
product states obtained from each other by the action of P,
with each domain wall pinned by the disorder at a single
bond. The standard deviation of the entanglement entropy

goes to zero in the thermodynamic limit both deep in the
thermal and localized phase, but diverges at the transition.
In the thermal phase, this is consistent with the eigenstate
thermalization hypothesis that requires the entropy to
depend on energy only, while in the localized phase, all
states have the same ln 2 entanglement entropy. The
diverging peak could be understood as follows. For a
given system size, disorder amplitude δJ and energy, near
the transition δJc, the exact value of the entanglement Sn
depends on the specific disorder realization. At a fixed
value of δJ close to the transition, therefore, the set of states
obtained from an ensemble of disorder realizations consists
of both extended and localized states giving rise to a large
standard deviation in the entanglement. Naturally, with
increasing system size, the range of values of δJ that have
states of mixed character narrows. By the same token, we
could observe the transition by measuring the standard
deviation over small energy windows.
Next, we probe the MBL transition by studying the

evolution of the entanglement entropy after a local quench
at the edge of an eigenstate. Before discussing the details of
the physics, we explain the procedure we used. After
quenching an eigenstate jni with a spin flip on the first
site, we calculate the time dependent entanglement entropy
SnðtÞ obtained from the von Neumann entropy of the state
jψnðtÞi ¼ expð−iHtÞσx1jni. In a finite system, SnðtÞ satu-
rates at long times allowing us to define the difference of
entanglement entropies

ΔSn ¼ lim
t→∞

SnðtÞ − Snð0Þ: ð2Þ

In Fig. 2(b), we plot the disorder averaged entanglement
difference hΔSi as a function of disorder strength, at an
energy in the middle of the spectrum. The entanglement
difference goes to zero both in the thermal and localized
phases. In the thermal phase, the entanglement difference
goes to zero because of the eigenstate thermalization
hypothesis since the local perturbation only introduces a
small uncertainty in the energy of the state. In the localized
phase, the perturbation cannot propagate to the middle
of the sample in order to generate any entanglement. Note
that the perturbation of the exact eigenstate is local and,
therefore, no entanglement is generated from the dephasing
mechanism observed in a global quench [24,26].
Around the transition, hΔSi peaks with a diverging

amplitude. This diverging peak might be understood as a
consequence of the many-body mobility edge. Namely,
after the quench, we have a state that is no longer an
eigenstate, but, rather, a linear combination of a number of
states with energies around En. Close to the transition, this
linear combination contains both extended and localized
states, and generates extensive entanglement under time
evolution. In the case when the initial state is a localized
state, this results in an entanglement difference that scales
with system size. Unlike σS, the quench mixes eigenstates

(a)

(b)

FIG. 2 (color online). (a) Standard deviation of entanglement
over the disorder ensemble as a function of disorder strength δJ
for different system sizes L and D independent disorder real-
izations, at a fixed energy density in the middle of the spectrum
(ϵ ¼ 59=60). The left inset shows the mean entanglement entropy
with dashed lines giving the values S ¼ ðL ln 2 − 1Þ=2 and
S ¼ ln 2. The right inset gives the scaling collapse of the data
in the main panel. (b) Entanglement difference as a function of
disorder strength for a local quench from an eigenstate in the
middle of the spectrum. The inset gives the scaling collapse
of the data.
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from the same disorder realization. Thus, a diverging hΔSi
is suggestive for the existence of a many-body mobility
edge. The physics of this local quench might, thus, be
related to that of the decay in Fock space of an electron-
hole pair excitation above an eigenstate as discussed by
Basko et al. [2].
To determine the location of the phase transition, we

perform a scaling collapse separately on the standard
deviation σS and the entanglement difference hΔSi, with
a scaling function taking the form

QðL; δJÞ ¼ gðLÞf(ðδJ − δJcÞLb); ð3Þ

where Q is the quantity that is scaled, δJc and b are scaling
parameters, and f is an undetermined function that is, in
principle, different for the two quantities [30]. In the middle
of the spectrum, we expect the entanglement to fluctuate
between the value ðL log 2 − 1Þ=2 in the thermal phase and
the value log 2 of the strongly insulating phase. This
motivates us to assume a prefactor of the form gðLÞ ¼
½ðL − 2Þ log 2 − 1�=2 near the transition point. At large
system sizes, this becomes a power law with a unit
exponent, compatible with the constraints on the entangle-
ment entropy derived in Ref. [28], but the constant shifts
are important to accurately collapse the data at the small
system sizes available to us. The collapsed data and the
obtained scaling parameters are shown in the insets to
Fig. 2, where xL ¼ ðδJ − δJcÞLb and yL ¼ Q=gðLÞ. Using
this generic scaling function, we find a remarkably good
collapse of the data. The given error bars on the critical
disorder strength and exponents take into account only
statistical errors, that is, they are obtained by repeating the
scaling fit multiple times by adding noise to the data with
amplitude given by the original error bars of the data [30].
Since different scaling approaches (different choices for the
amplitude g) give slightly different values for δJc and b, the
actual error bars are considerably larger [33]. At lower
energy densities, the entanglement in the thermal phase will
be different from that of a random state, and therefore, the
exact functional form of gðLÞ is, in this case, unknown. Its
form at high energies, however, suggests taking it as a sum
of a term linear in L and a constant (energy dependent)
term. Doing this, we obtain the energy dependence of the
critical disorder strength δJMBL

c and, thereby, the phase
boundary given in Fig. 1 (see Supplemental Material for
details [34]). We use the ΔS data as we find it to be slightly
more accurate; the standard deviation gives consistent
results. The apparent phase boundary curvature hints at
the presence of a many-body mobility edge [2,6].
The entanglement probes discussed above are only sen-

sitive to the MBL transition, while, as shown in Fig. 1, there
are two separate MBL phases. If the number of domain
walls is not conserved because overlapping pairs of domain
walls are created and removed, the eigenstates have no
order and form a paramagnet. A spin-glass order develops

once the domain walls are strongly localized and their
number fluctuations are small [6,21]. The regions between
the separated domain walls have a fixed magnetization with
the resulting broken Z2 symmetry protected by disorder.
The spin-glass order is reflected in the divergence of the
order parameter

χSGn ¼ 1

L

XL

i;j¼1

hnjσziσzjjni2; ð4Þ

in the thermodynamic limit (χSG ∝ L). Outside the glassy
phase, χSG → 1 due to normalization. The numerical results
for hχSGi, obtained by averaging over all states within
58=60 ≤ ϵ ≤ 1 for each disorder realization, are shown in
Fig. 3. As for the localization transition, we obtain the spin-
glass phase transition location by performing a finite size
scaling via Eq. (3) with gðLÞ ¼ La (see inset to Fig. 3).
Repeating this process for different energies results in the
phase diagram given in Fig. 1 [34]. From our data we
conclude that the localization and spin-glass transition are
separate transitions.
In addition to the dynamical MBL and spin-glass

transitions a spectral transition takes place at large disorder
strength [6], which, unlike the other two transitions, cannot
be directly detected in a single eigenstate. Instead, it is
characterized by each energy in the spectrum becoming
doubly degenerate. The reason for this degeneracy is the
same as for the degenerate ground state of an open Ising
chain: the presence of a Majorana edge mode bilocalized at
the two edges. In the spin glass phase, the bulk excitations

FIG. 3 (color online). Spin-glass order parameter (4) as
function of disorder strength δJ for different system sizes L
and D independent disorder realization, at a fixed energy in the
middle of the energy spectrum (ϵ ¼ 59=60). The dashed line
gives the expected value hχSGi ¼ 1, determined by normaliza-
tion, in the absence of spin glass order. In the spin glass phase
hχSGi is proportional to L.The inset shows the scaling collapse of
the data.
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are localized strongly enough that the splitting of the
Majorana mode is still exponentially small, going like
expð−L=ξÞ with ξ the localization length. All states,
therefore, come in pairs that differ only in the occupation
of the Majorana mode. Unlike in the ground state, the
broken Z2 symmetry is, however, not enough to give
pairing, since the splitting of the edge modes competes with
the mean level spacing, which is also exponentially small in
system size but with a prefactor that depends only weakly
on disorder. The pairing transition could, therefore, be
separate from the spin glass transition. We have clearly
observed the pairing transition in our data (not shown) but
have not been able to perform a reliable finite size scaling
analysis of it in order to obtain the transition location.
In particular, we could not determine with sufficient
accuracy whether the spectral transition is separate from the
spin-glass transition, though our data suggest that it is.
In conclusion, we have explored two promising probes of

the many-body localization transition and used them to study
the transition in a disordered quantum Ising chain as a
function of energy density. These probes are obtained from
the entanglement properties of exact eigenstates, namely its
standard deviation and its time evolution after a local quench
at the edgeof an eigenstate.Wehave obtained clear signatures
of the many-body localization transition and given evidence
for the development of spin-glass order at large disorder
strength. Thereby, we provided a numerical estimate of the
full MBL phase diagram as a function of disorder and energy
that is consistent with that of Huse et al. [6].
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