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An effective low-energy Hamiltonian of itinerant electrons for iridium oxide Na2IrO3 is derived by an
ab initio downfolding scheme. The model is then reduced to an effective spin model on a honeycomb lattice
by the strong coupling expansion. Here we show that the ab initio model contains spin-spin anisotropic
exchange terms in addition to the extensively studied Kitaev and Heisenberg exchange interactions, and
allows us to describe the experimentally observed zigzag magnetic order, interpreted as the state stabilized
by the antiferromagnetic coupling of the ferromagnetic chains. We clarify possible routes to realize
quantum spin liquids from existing Na2IrO3.
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Introduction.—Cooperation and competition between
strong electron correlations and spin-orbit couplings have
recently attracted much attention. Iridium oxides offer a
playground for such an interplay and indeed exhibit
intriguing rich phenomena [1–4].
Especially, a theoretical prediction [1,2] on the possible

realization of quantum spin liquid state and Majorana
fermion state proven by Kitaev [5] as the ground state
of an exactly solvable model now called the Kitaev model
has inspired extensive studies on A2IrO3 (A ¼ Na or Li) as
a model system to realize the Kitaev spin liquid. However,
although Na2IrO3 is an insulator (presumably a Mott
insulator) with the optical gap ∼0.35 eV [6], it was shown
that Na2IrO3 does not show spin liquid properties exper-
imentally but exhibits a zigzag type magnetic order [7,8].
The Kitaev-Heisenberg model on the honeycomb lattice

[1,2,9–11] was further proposed to describe Na2IrO3, which
includes isotropic superexchange couplings in addition to
the Kitaev-type anisotropic nearest-neighbor Ising inter-
actions whose anisotropy axes depend on the bond direc-
tions. However, it turned out that this model cannot be
straightforwardly consistent with the zigzag order either.
This discrepancy inspired further studies on suitable low-
energy effective Hamiltonians forA2IrO3 withA ¼ Na or Li.
First, models with further neighbor couplings [7,8,12,13]
were studied.Additional Ising anisotropy [14] due to a strong
trigonal distortion, which actually contradicts the distortions
in the experiments [8] and in the ab initio treatments,was also
examined. Quasimolecular orbitals [15], instead of the
atomic orbitals assumed in the Kitaev-Heisenberg model,
were claimed as a proper choice of the starting point. So far
the origin of the zigzag type antiferromagnetic order
observed for Na2IrO3 and the possible route to realize the
quantum spin liquid are controversial.
In this Letter, we derive an ab initio spin model for

Na2IrO3 and show that trigonal distortions present in
Na2IrO3 in addition to the spin-orbit couplings hold the

key: The simplest and realistic spin model for A2IrO3 will
turn out to modify the Kitaev-Heisenberg Hamiltonian by
additional anisotropic couplings as

Ĥ ¼
X

Γ¼X;Y;Z

X
hl;mi∈Γ

~̂S
T
lJ Γ

~̂Sm; ð1Þ

where ~̂S
T
l ¼ ðŜxl; Ŝyl; ŜzlÞ is a vector of SU(2) spin operators.

The exchange couplings are given in matrices J Γ. The
summations are over the nearest-neighbor pairs hl; mi. The
group of bond Γ with Γ ¼ X; Y, and Z is defined in Fig. 1.
The exchange matrices are parametrized as

J Z ¼

2
64
J I1 I2
I1 J I2
I2 I2 K

3
75; J X ¼

2
64
K0 I″2 I02
I″2 J″ I01
I02 I01 J0

3
75;

J Y ¼

2
64
J″ I″2 I01
I″2 K0 I02
I01 I02 J0

3
75; ð2Þ

where we choose a real and symmetric parametrization by
using U(1) and SU(2) symmetry of electron wave functions
andspin operators, respectively. Thedetails of these exchange
parameters are described in the following discussion.
In addition to the Kitaev couplingK andK0, and XY-type

exchange J, magnetic anisotropy induced by a combination
of spin-orbit couplings and trigonal distortions appears as
anisotropic couplings such as I1 and I2. Here we note that
our parametrization of the Kitaev term is different from that
of Refs. [1,2,11]: The Kitaev term K in the present Letter
corresponds to −jKj þ J in Refs. [1,2,11]. These aniso-
tropic couplings drastically change candidate quantum
phases and competition among them in Na2IrO3 and related
materials. With these extensions, we show that the model
allows a realistic description of Na2IrO3 and provides a
basis for further search of quantum spin liquids. To achieve
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quantitative accuracy, we include the further neighbor
couplings in our numerical calculations as detailed later.
Ab initio derivation and estimate of itinerant effective

Hamiltonian.—To discuss the low-energy physics of
Na2IrO3, we employ a recently proposedmultiscale ab initio
scheme for correlated electrons (MACE) [16]: First, we
obtain the global band structure using the density functional
theory (DFT). Second, using a Wannier projection on the
Ir 5d t2g target bands, we derive an effective model for the Ir
5d t2g orbitals by the downfolding procedure taking into
account the renormalization from the states other than the Ir
5d t2g orbitals.
The global electronic structure was obtained by perform-

ing the density functional calculations using the Elk full-
potential linearized augmented plane-wave code [17] with
the Perdew-Wang exchange-correlation functional [18].
The resultant electronic structures agree with the previous
DFT results [15] (see Supplemental Material [19]). We next
constructed the Wannier orbitals from the Ir t2g bands
following the same procedure described in Ref. [20]. One-
body parameters tσ;σ

0
l;m;a;b in the low-energy Hamiltonian are

given by the matrix elements of the Wannier orbitals as

tσ;σ
0

l;m;a;b ¼
Z

dr1w�
laσðr1ÞĤKSwmbσ0 ðr1Þ; ð3Þ

with the Kohn-Sham Hamiltonian ĤKS and the indices for
sites l and m, orbitals a and b, and spins σ and σ0.
The effective Coulomb interactions between these orbi-

tals are estimated by the constrained random phase
approximation (cRPA) [21]. Using the density response
code for Elk [22], we obtain the constrained susceptibility
of the noninteracting Kohn-Sham electrons χ0ðr; r0;ωÞ
where contribution of particle-hole excitations within the
target t2g bands is excluded. We then calculate the partially
screened Coulomb interaction

Wðr;r0;ωÞ¼ 1

jr− r0jþ
Z

dr1dr2
χ0ðr1;r2;ωÞ
jr−r1j

Wðr2;r0;ωÞ;

which yields the Coulomb interaction between the Wannier
orbitals w as

UKLMN ¼ lim
ω→0

Z
dr1dr2w�

Kðr1Þw�
Lðr2ÞWðr1; r2;ωÞ

× wMðr1ÞwN ðr2Þ;

where K, L, M, and N are the combined indices for the
orbital and site.
Ab initio model for t2g Hamiltonian.—The derived

multiband model consisting of a t2g manifold of the iridium
atoms is given by the t2g-Hamiltonian

Ĥt2g ¼ Ĥ0 þ Ĥtri þ ĤSOC þ ĤU; ð4Þ

where each decomposed part is determined in the follow-
ing: The hopping terms are given by

Ĥ0 ¼
X
l≠m

X
a;b¼xy;yz;zx

X
σ;σ0

tσσ
0

l;m;a;b½ĉ†laσ ĉmbσ0 þ H:c:�: ð5Þ

Here we note that, among all the hoppings, the dominant
terms are the nearest-neighbor hoppings t≃ tσσl;m;a;b ≃
tσσl;m;b;a that satisfy ða; bÞ ¼ ðzx; xyÞ, ðxy; yzÞ, or ðyz; zxÞ
with hl; mi ∈ X, Y, and Z, which is consistent with the
original proposal [1] for theKitaev couplings. The x, y, and z
axes are illustrated in Fig. 1.
The on-site atomic part is derived from Eq. (3) with

l ¼ m and can be described as the contribution from
the trigonal distortion (with orbital-dependent chemical
potentials) and the atomic part of the spin-orbit coupling

by introducing a vector representation ~̂c†l ¼ ðĉ†lyz↑; ĉ†lyz↓;
ĉ†lzx↑; ĉ

†
lzx↓; ĉ

†
lxy↑; ĉ

†
lxy↓Þ as

Ĥtri ¼
X
l

~̂c†l

2
64
−μyz Δ Δ
Δ −μzx Δ
Δ Δ −μxy

3
75σ̂0~̂cl ð6Þ

and

ĤSOC ¼ ζso
2

X
l

~̂c†l

2
64

0 þiσ̂z −iσ̂y
−iσ̂z 0 þiσ̂x
þiσ̂y −iσ̂x 0

3
75~̂cl: ð7Þ

FIG. 1 (color online). Left panel:
Crystal structure of Na2IrO3. Right
panel: Honeycomb lattice with X, Y,
and Z bonds. Same colored bonds in-
dicate the same group. The x, y, and z
axes in defining the t2g orbitals are
illustrated as directions out of the
honeycomb plane. The honeycomb
plane is then perpendicular to
ðx; y; zÞ ¼ ð1; 1; 1Þ. The dashed boun-
dary represents a 24-site cluster used
later for the exact diagonalization.
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Both the off-diagonal elements of the spin-independent part
Ĥtri and the spin-dependent part ĤSOC can bewell described
by a single parameterΔ and ζso, respectively. Because of the
inherent crystal anisotropy differentiating Ir-Ir bonds along
the b axis from others [23], the chemical potential for the xy
orbitals, μxy, is different from μyz and μzx. The symmetry of
these terms is slightly broken in the real crystal due to the
stacking fault along the c axis and the locations of other ions.
However, the deviation is much smaller than 0.005 eV.
The Coulomb term expressed by the Wannier orbital

basis is well described by a symmetric form as

ĤU ¼U
X
l

X
a¼yz;zx;xy

n̂la↑n̂la↓þ
X
l≠m

X
a;b

Vl;m

2
n̂lan̂mb

þ
X
l

X
a<b

X
σ

½U0n̂laσn̂lbσ̄ þðU0−JHÞn̂laσn̂lbσ�

þJH
X
l

X
a≠b

½ĉ†la↑ĉ†lb↓ĉla↓ĉlb↑þ ĉ†la↑ĉ
†
la↓ĉlb↓ĉlb↑�;

ð8Þ

with the local intraorbital Coulomb repulsion,U, interorbital
Coulomb repulsion, U0, the Hund’s rule coupling, JH, the
interatomic Coulomb repulsion, Vl;m, and n̂la ¼ n̂la↑ þ
n̂la↓. The orbital dependences of U; JH, and V are negli-
gibly small.
The obtained tight binding parameters are given inTable I.

We also list the orbital-averaged values of U;U0; JH, and V
obtained by the cRPA. We note that Δ ¼ −28 meV for the
t2g model [24]. One might think that Δ ¼ −28 meV looks
like a tiny parameter. However, it is crucial to keep it because
it generates relevant anisotropy illustrated later in Fig. 3.
Strong coupling limit, minimal spin model for A2IrO3.—

The ab initio parameters for the generalized Kitaev-
Heisenberg model (1) are derived from the t2g
Hamiltonian Ĥt2g in Eq. (4) by the second order perturbation
theory: Here we take Ĥtri þ ĤSOC þ ĤU as an unperturbed
Hamiltonian and Ĥ0 as a perturbation. Since the ground state

of Ĥtri þ ĤSOC þ ĤU is degenerate, we employ the standard
degenerate perturbation theory. If we neglect Δ and μa
(a ¼ yz, zx, xy), the lowest Kramers doublets become so-
called Jeff ¼ 1=2 states. The atomic ground state of an
isolated iridium atom is preserved to be a doublet irrespec-
tive of the amplitudes of Δ [19], whose degeneracy is
protected by the time-reversal symmetry. Then the gener-
alized Kitaev-Heisenberg model describing pseudospin
degrees of freedom is justified as an effective model in
the ground state as well as at a finite temperature unless it
exceeds both of Δ and ζso.
The exchange couplings J Z, J X, J Y , and further

neighbor couplings are derived through the second order
perturbation theory by numerically diagonalizing the local
part of the Hamiltonian Ĥtri þ ĤSOC þ ĤU and by includ-
ing all order terms with respect to ζso and Δ, irrespective of
their amplitudes. (See Supplemental Material [19].) Thus
obtained ab initio values for Na2IrO3 are given in Table II.
We remark that K ∼ −30.1 meV is negative and J ∼
4.4 meV is positive for the Z bonds. For numerical
calculations, we also include the second and third neighbor
couplings for more accurate ab initio calculations [19].
The model (1) with the ab initio parameters in Table II

together with small and detailed second and third neighbor
exchange couplings [19] was solved by the exact diagonal-
ization for a 24-site cluster. We also calculate finite temper-
ature properties for the cluster by using the thermal pure
quantum states [26], which offer an algorithm similar to the
finite-temperature Lanczos [27] and earlier works [28].
They well reproduce the experimentally observed zigzag
magnetic order as the ground state and finite temperature
properties. See the detailed results in later discussions for
Fig. 2 and the Supplemental Material [19].
Neither large further neighbor exchange couplings

[7,8,12,13] nor antiferromagnetic Kitaev couplings
K > 0 [11,30] assumed and required to reproduce the
experimental zigzag magnetic order in the literature are
realistic in the ab initio point of view. In addition, the
amplitudes of the anisotropic couplings I1 and I2 compa-
rable with J are crucially important to reproduce the
experimental results, contrary to the assumptions in
Refs. [11] and [30]. The eg-orbital degrees of freedom,
proposed to change the sign of K in Ref. [11] and neglected
in the present Letter, generate only minor corrections [19].
The stabilization of the zigzag order is interpreted as

follows: If we assume the magnetic ordered moment along
ðx; y; zÞ ¼ ð1; 1; 0Þ, the zigzag order is interpreted as

TABLE I. One-body and two-body parameters for Ĥt2g. The
most relevant hopping parameter t, the atomic spin-orbit coupling
ζso, and the trigonal distortion Δ, are shown for the one-body
part. Here, t is for tσ;σl;m;ξ;η for hl; mi being the Z bond and its
symmetric replacement for X and Y bonds. As for the two-body
parameters, we list the cRPA results for the local intraorbital
Coulomb repulsion U, the Hund’s rule coupling JH, and the
orbital-independent nearest-neighbor Coulomb repulsion V.
Other small one-body parameters are given in Ref. [19].

One-body
parameters (eV)

t μxy − μyz;zx ζso Δ

0.27 0.035 0.39 −0.028

Two-body
parameters (eV)

U U0 JH V

2.72 2.09 0.23 1.1

TABLE II. Nearest-neighbor exchange couplings derived by
the strong coupling expansion from the ab initio t2g model.

J Z (meV) K J I1 I2
−30.7 4.4 −0.4 1.1

J X;Y (meV) K0 J0 J″ I01 I02 I″2
−23.9 2.0 3.2 1.8 −8.4 −3.1
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ferromagnetically ordered chains consisting of the X and Y
bonds (stabilized by K0 and I″2), antiferromagnetically
coupled to each other by the Z bonds with J, which is
in contrast to a quantum-chemistry estimate that neglects
I2, I02, and I″2 [23]. Indeed, these four exchange couplings,
K ∼ K0 < 0, J > 0, and I″2 < 0, are crucial to reproduce the
zigzag order [19]. The alignment along (1,1,0) assumed
here indeed agrees with the result of the pinning field
analysis [19] shown in Fig. 2(a). It is also confirmed by the
nearest-neighbor spin-spin correlations, hŜxlŜxmi¼hŜylŜymi¼
−0.021, hŜzlŜzmi ¼ 0.128, for the Z bond, and hŜxlŜxmi ¼
0.052ð0.098Þ, hŜylŜymi ¼ 0.098ð0.052Þ, hŜzlŜzmi ¼ −0.020,
for the X bond (Y bond).
Comparison with experiments.—Our effective spin

model reproduces not only the zigzag order but also
magnetic specific heat and anisotropic uniform magnetic
susceptibilities consistently with experiments, as shown in
Fig. 2(b) and 2(c). For the specific heat, our results are
consistent without adjustable parameters. The uniform
magnetic susceptibilities χ show Curie-Weiss behaviors
and χab < χc, where χab (χc) is the inplane (out-of-plane)
susceptibility, which are consistent with experiments. If we
introduce a g factor, g ¼ 1.5, and anisotropic van Vleck
term, χ0 ¼ 1 × 10−4 cm3=mol for χc, high-temperature
behaviors of χ are qualitatively reproduced as shown in
Fig. 2(c). Here we note that the electron’s spin moments are
different from those of the effective spin models depending

on the choice of the Kramers doublets, j↑i and j↓i [19]. For
the calculation of χ, we project the original Zeeman term to
the effective spin basis Ŝx;y;zl [19]. It is left for future studies
to relate linear spin wave analysis of our model to the
inelastic neutron scattering experiment [7].
Phase diagram in lattices distorted from Na2IrO3.—

Now we examine the sensitivity of the ground state for the
ab initio parameter of Na2IrO3 to perturbations and search
candidates of other quantum states possibly induced by a
thermodynamic control such as pressure or in derivatives of
Na2IrO3 such as Na2−xLixIrO3 [31]. Here we choose the
trigonal distortionΔ as an experimentally accessible control
parameter. First, the Δ dependence of the exchange cou-
plings is illustrated in Fig. 3(a), where the parameters of the
ab initio t2g Hamiltonian other than Δ are kept unchanged,
and the exchange couplings are estimated from the same

FIG. 2 (color online). Ground state and finite temperature
properties of the generalized Kitaev-Heisenberg model for
Na2IrO3 calculated for the 24-site cluster by using the Lanczos
method and thermal pure quantum states [26]. (a) Ground state
magnetic order determined by applying tiny local magnetic fields
(∼10−2 meV) at a single site. (b) Temperature dependence of
specific heat C and entropy S, which are consistent with an
experiment [29]. Shaded area shows uncertainty due to finite size
effects [26]. (c) Temperature-dependence of in-plane and out-of-
plane magnetic susceptibilities, which are also consistent with the
experiment [29] at high temperatures.

FIG. 3 (color online). (a) Δ dependence of matrix elements of
J Z, J X as functions of Δ. Around the ab initio values at Δ
(∼ − 28 meV) listed in Table II, K < 0, K0 < 0, J > 0, J0 > 0,
and J″ > 0 are stably satisfied with gradual dependences on Δ.
(b) Ground state phase diagram for Na2IrO3 with lattice dis-
tortions represented by changes in Δ. The phase boundaries are
determined by anomalies (peaks signaling continuous transitions)
in second derivatives of the exact energy for the 24-site cluster
with respect to Δ. Around the ab initio parameter Δ ¼ −28 meV,
the zigzag order appears. By increasing Δ, a 6-site unit cell order
(or 120° structure [30]) illustrated in the lower left panel and a
24-site unit cell long-period order [19], appear. (c) Δ dependence
of the ground state of the generalized Kitaev-Heisenberg model
for “expanded lattices.” Here we neglect the small hopping
parameters other than t and take a larger Hund’s rule coupling
JH ¼ 0.3 eV. Spin liquid phases compete with ferromagnetic
states and 12-site unit cell orders illustrated in the upper right
panel [19], where the phase transitions among them are also
interpreted as continuous ones.
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strong coupling expansion by changingΔ. The ground state
of the generalized Kitaev-Heisenberg model with the
Δ-dependent exchange couplings is shown in Fig. 3(b).
How to approach spin liquids.—As already evident in

Table II, the ab initio effective spin model for Na2IrO3 is
governed by dominant Kitaev-type ferromagnetic exchange
couplings. By expanding the lattice, the spin liquid phase
may become accessible: Expansion of the lattice makes the
hopping parameters other than the dominant one t negli-
gible. In addition, the environment of the iridium atoms
approaches the spherical limit where the intraorbital
Coulomb repulsion U0 satisfies U0 ¼ U − 2JH. Indeed,
when we omit the hopping parameters other than t and
increase JH up to 0.3 eV to satisfyU0 ¼ U − 2JH, we obtain
the spin liquid states adiabatically connected to the Kitaev’s
spin liquid as shown in Fig. 3(c).
Summary.—We have shown that the realistic parameter

of the ab initio model for Na2IrO3 reproduces the exper-
imentally observed robust zigzag magnetic order, while a
quantum spin liquid phase adiabatically connected to the
Kitaev spin liquid emerges when the smaller trigonal
distortion Δ and expanded lattice constants are satisfied.
In this sense, uniaxial strain to reduce Δ is helpful as an
approach to realize the spin liquids. Clearly further studies
are needed: A more accurate estimate of the phase diagram
of the generalized Kitaev-Heisenberg model is certainly
helpful. More detailed studies by taking account of full
quantum fluctuations and the effects of realistic itinerancy
beyond the strong coupling limit are future intriguing issues.
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