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Finding a clear signature of topological superconductivity in transport experiments remains an
outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional
topological insulator nanowires to generate a normal-superconductor junction in the single-mode regime
where an exactly quantized 2e2=h zero-bias conductance can be observed over a wide range of realistic
system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned
at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap
out the normal part, except for two spatially separated chiral channels. The combination of chiral mode
transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the
quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our
proposal may be understood as a variant of a Majorana interferometer which is easily realizable in
experiments.
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A topological superconductor is a proposed novel phase
of matter with exotic properties like protected boundary
states and emergent quasiparticles with non-Abelian statis-
tics. If realized, these superconductors are expected to
constitute the main building block of topological quantum
computers [1]. The prototypical example of this phase, the
p-wave superconductor, has proven to be difficult to find in
nature, with superconducting Sr2RuO4 and, indirectly, the
ν ¼ 5=2 fractional quantum Hall state among the very few
conjectured candidates. While many experiments have been
suggested and performed on these systems, evidence for
their topological properties remains elusive. However, the
recent realization that a p-wave superconductor need not be
intrinsic, but can alternatively be engineered with regular
s-wave superconducting proximity effect in strongly spin-
orbit coupled materials [2–4], has opened a promising new
path in the search for topological superconductivity.
A class of these new topological superconductors is

predicted to be realized in one-dimensional (1D) systems
with broken time-reversal symmetry [5]. These systems are
characterized by Majorana zero-energy end states, which
are responsible for a fundamental transport effect known as
perfect (or resonant) Andreev reflection [6]: in a junction
between a normal contact that hosts a single propagating
mode and a topological superconductor, this mode must be
perfectly reflected as a hole with unit probability, resulting
in the transfer of a Cooper pair across the junction and an
exactly quantized zero-bias conductance of 2e2=h. This
effect does not depend at all on the details of the junction,
and can be intuitively understood as resonant transport
mediated by the Majorana end states [3,6]. On the other

hand, if the superconductor is trivial and hence has no
Majorana state, in the single-mode regime the conductance
exactly vanishes. The conductance in the single-mode
regime is in fact a topological invariant [7,8] that directly
distinguishes trivial from topological superconductors in a
transport experiment.
A prominent example of a 1D topological superconduc-

tor is realized in semiconducting quantum wires in the
presence of a magnetic field [9,10]. Recent transport
experiments with such wires aimed to demonstrate the
existence of this phase have reported a finite zero-bias

FIG. 1 (color online). (a) A NS junction formed with a TI
nanowire. (b) Schematic representation of the modes involved in
transport: a chiral mode splits into two Majorana modes at the
interface, recombines, and exits as a chiral mode again. (c) The
Majorana interferometer proposed in Refs. [36,37]. S and D
denote source and drain, respectively. (d) An unfolded repre-
sentation of the setup in (b).
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conductance across a normal-superconductor (NS) junction
[11,12], but the predicted quantization has so far remained
a challenge to observe. A possible reason is that these wires
typically host several modes [13–18] and fine tuning the
chemical potential to the single mode regime can be
difficult. In the presence of several modes, either a tunnel
barrier [11,12] or a quantum point contact [8] may be used
to isolate the resonant contribution, but the temperature
required to resolve a zero-bias peak then becomes chal-
lengingly small. The optimal NS junction to probe this
effect should therefore have a robust, easy to manipulate
single-mode normal part smoothly interfaced with a super-
conductor that can be controllably driven into the topo-
logical phase.
In this work, we propose to realize such a junction

starting from an alternative route to 1D topological super-
conductivity, recently proposed by Cook and Franz [19],
based on the use of nanowires made from three-
dimensional topological insulators (TIs). In the nanowire
geometry, the 2D surface states of a TI are resolved into a
discrete set of modes, with the property that when a parallel
flux of h=2e threads the wire, the number of modes is
always odd [20–22]. When a superconducting gap is
induced on the surface via the proximity effect, this
guarantees that the system becomes a topological super-
conductor [5,19]. A NS junction can then be built be
proximitizing only part of the wire, where the super-
conducting part can be tuned in and out of the topological
phase with the in-plane flux [19,23].
In addition, our design simultaneously allows us to drive

the normal region into the single-mode regime by exploit-
ing the unique orbital response of TI surface states to
magnetic fields [24–28]. When a perpendicular field is
applied to the normal part of the wire, its top and bottom
regions become insulating because of the quantum Hall
effect. In between these regions, counterpropagating chiral
edge states are formed, which are protected from back-
scattering due to their spatial separation. The resulting NS
junction, shown in Fig. 1, has a single chiral mode
reflecting from the superconductor, and is ideal for probing
conductance quantization. Moreover, all of its components
are readily available, as both surface transport in TI
nanowires [29–32] and the contacting of bulk TI with
superconductors [33–35] have already been demonstrated
experimentally. In the remainder of this Letter, we provide a
detailed study of the transport properties of this system,
demonstrating that conductance quantization is achievable
under realistic conditions, and discuss the advantages of
our setup over other proposals.
To model the proposed device, we consider a rectangular

TI nanowire of height h and width w (perimeter
P ¼ 2hþ 2w). The surface of the wire is parametrized
with two coordinates ðx; sÞ, where s is periodic s ∈ ½0; 2π�
and goes around the perimeter of the wire, while x goes
along its length. We first consider a magnetic field parallel

to the wire, ~B ¼ ðB∥; 0; 0Þ, described with the gauge choice

~A ¼ B∥ð0;−z=2; y=2Þ. The dimensionless flux through the
wire is η ¼ B∥hw=ðh=eÞ. The effective theory for the
surface states is the same as for a cylindrical wire
[20,21], with s the azimuthal angle

H0 ¼ −ivF½σx∂x þ σyð2π=PÞð∂s þ iηÞ�; ð1Þ

where we set ℏ ¼ 1 and take vF ¼ 330 meVnm [38]. The
wave functions satisfy antiperiodic boundary conditions in
s due to the curvature-induced π Berry phase [20,21]. The
eigenfunctions of H0 thus have the form

ψk;nðx; sÞ ¼ eikxeilnsχk;n; ð2Þ

with half-integer angular momentum ln ¼ n − 1=2 where
n ∈ Z. The spectrum is Ek;n¼vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þð2π=PÞ2ðlnþηÞ2

p
,

and is depicted in Fig. 2(a). For η ¼ 0 all modes are doubly
degenerate, while for η ¼ 1=2 the number of modes is
always odd because the n ¼ 0 one is not degenerate.
By bringing the wire into contact with an s-wave

superconductor [19], as shown in Fig. 1, an s-wave pairing
potential Δ is induced due to the proximity effect. The
Bogoliubov–de Gennes Hamiltonian can be written as
H ¼ 1

2
Ψ†HΨ with

H ¼
�

H0 ΔðsÞ
Δ�ðsÞ −T−1H0T

�
; ð3Þ

where Ψ ¼ ðψ↑;ψ↓;ψ
†
↓;−ψ

†
↑Þ is a Nambu spinor. The

induced pairing potential is ΔðsÞ ¼ Δ0e−invs, where the
phase of Δ can wind around the perimeter with vorticity nv.

(a)

(b) (c)

FIG. 2 (color online). (a) The spectrum of a wire of dimensions
h ¼ 40 nm and w ¼ 160 nm for B⊥ ¼ 0 and η ¼ 0 (left), B⊥ ¼
0 and η ¼ 1=2 (center), and B⊥ ¼ 2T (right). Note that in the last
case the spectrum is independent of η. (b) NS conductance for
B⊥ ¼ 0 and Δ0 ¼ 0.25 meV as a function of μ, for η ¼ 0, nv ¼ 0
(dashed line) and η ¼ 1=2, nv ¼ 1 (full line) (c) The same for
B⊥ ¼ 2T.
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For η ¼ 0 the ground state has nv ¼ 0. Around η ¼ 1=2,
however, it should be energetically favorable for Δ to
develop a vortex [39]. In an actual experiment, nv is
expected to jump abruptly as η is ramped continuously
from zero to 1=2 [40]. For η around 1=2 and in the presence
of a vortex, the nanowire becomes a topological super-
conductor for any μ within the bulk gap [19].
The presence of the vortex is essential in order to observe

perfect Andreev reflection in our setup. To see this,
consider the Hamiltonian in Eq. (3) in the presence of a
NS interface at x ¼ 0 with nv vortices. Introducing Pauli
matrices τi acting in Nambu space

HðnvÞ ¼ ½−iσx∂x þ σyð−i∂s þ ητzÞ2π=P − μ�τz
þ Δ0θð−xÞe−iτznvsτx: ð4Þ

For nv ¼ 0, electron states in the normal part have finite
angular momentum ln, see Eq. (2), while hole states have
angular momentum −ln, independently of the value of η.
Since angular momentum must be conserved upon reflec-
tion, a single incoming electron can never be reflected
as a hole. For nv ¼ 1 rotational invariance appears to be
broken by the pairing term, but is explicitly recovered after
the gauge transformation Ψ → eiτzs=2Ψ, which shifts
η → η − 1=2. This transformation also changes the boun-
dary conditions to periodic, such that angular momenta take
integer values l0n ¼ n. As a result, the n ¼ 0 electron state
now has the same angular momentum as its conjugate hole
state and can be reflected into it.
The NS conductance of the junction is computed from

the Andreev reflection matrix, evaluated separately for
every n, in a very similar way to Ref. [41]. To compute it,
we define incoming ψe−

n and outgoing ψeþ
n propagating

electron states in the normal part, and similarly for
hole states ψh−

n and ψhþ
n . Normalization is chosen such

that all propagating states carry the same current,
Jx ¼ hψ jσxjψi ¼ 1. These are matched to the evanescent
states in the superconductor ψSþ

n and ψS−
n by imposing

continuity of the wave function at the junction (dropping
the label n for ease of notation)

ψe− þ reeψeþ þ rheψh− ¼ aψSþ þ bψS−; ð5Þ

ψh− þ rhhψhþ þ rehψe− ¼ a0ψSþ þ b0ψS−: ð6Þ

The reflection matrix is defined as r ¼ � ree reh
rhe rhe

�
, and is both

unitaryandparticle-hole symmetric.Theconductance isgiven
by GNS ¼ ð2e2=hÞtrrehr†eh, where the trace sums over all
propagating modes. The resulting GNS for Δ0 ¼ 0.25 meV
are shown in Fig. 2(b). When η ¼ 1=2, nv ¼ 1 and in the
range μ < π=P, a single mode is reflected from a topological
superconductor resulting in a conductance of 2e2=h.
The conditions to observe conductance quantization

in this setup are not optimal yet, mainly because the
chemical potential has to be tuned into a small gap π=P.

This limitation can be overcome by the addition of a
perpendicular field. Consider the Hamiltonian of the
normal wire with ~B ¼ ðB∥; B⊥; 0Þ and a vector potential
~A ¼ B⊥ðz; 0; 0Þ þ B∥ð0;−z=2; y=2Þ such that translational
invariance is still preserved in the x direction

H ¼ σx½−i∂x þ eAxðsÞ� þ
2π

P
σyð−i∂s þ ηÞ: ð7Þ

The vector potential in the surface coordinates is

AxðsÞ ¼ B⊥P

8>><
>>:

− r
4

−1þr
4

< s
2π <

1−r
4

s
2π −

1
4

1−r
4

< s
2π <

1þr
4

r
4

1þr
4

< s
2π <

3−r
4

− s
2π þ 3

4
3−r
4

< s
2π <

3þr
4

; ð8Þ

with r ¼ w=ðwþ hÞ. The profiles of Ax and B⊥ along the s
direction are shown in the inset of Fig. 3(b). Since rota-
tional symmetry is broken, the different nmodes are mixed.
In the angular momentum basis, Eq. (2), the Hamiltonian is
H ¼ P

N
n;n0¼−N χ†k;nHn;n0 ðkÞχk;n0 , where N is an angular

momentum cutoff. The matrix element is given by

Hnn0 ðkÞ ¼ ½σxkþ σyð2π=PÞðn − 1=2þ ηÞ�δn;n0

þ σx
XM

m¼−M
eAðmÞ

x δn;n0þm; ð9Þ

where AðmÞ
x ¼ R

2π
0 ðds=2πÞe−imsAxðsÞ ¼ B⊥Pð−1Þðmþ1Þ=2×

sinðmπr=2Þ=m2π2 if m is odd and vanishes otherwise, and
M is a cutoff for the number of Fourier components of Ax,
with M ≤ N. The spectrum of the wire only changes
qualitatively when lB < w, with lB ¼ ðℏ=eB⊥Þ1=2 the mag-
netic length, and Landau levels start to form in the top and
bottom surfaces, which merge smoothly with dispersing
chiral states localized in the sides. The spectrum in this
regime, shown in Fig. 2(a), becomes independent of B∥.
The NS conductance for finite B⊥ can be computed as

before with one important difference: in the basis states for

FIG. 3 (color online). Disorder averaged conductance for a
finite wire of dimensions L ¼ 400 nm, h ¼ 40 nm, and
w ¼ 160 nm for different values of the disorder strength g.
(a) Conductance as a function of chemical potential with fixed
magnetic field B⊥ ¼ 2 T. Inset: Cross section of the rectangular
wire, with the coordinate s depicted as a dashed arrow. (b) Con-
ductance as a function of B⊥ at fixed chemical potential
μ ¼ 10 meV. Inset: The vector potential Ax as given by
Eq. (8), and its associated magnetic field profile.
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the normal part, the evanescent states (with Im½kev� > 0)
must be included to obtain a well-defined matching
condition. The incoming electron states, labeled now by
α ¼ 1;…; Nprop, are ψe−

α ¼ e−ikx
P

N
n¼−N eilnsχe−n;k, and sim-

ilarly for ψeþ
α , ψh−

α , and ψhþ
α . The evanescent states are

defined as ψN
α0 , with α

0 ¼ 1;…;Nev, withNev þNprop ¼ 2N.
Both propagating and evanescent momenta, and wave
functions are obtained from the transfer matrix of the
normal part [42–44]. We assume that B⊥ is completely
screened in the superconducting part of the wire (see
Fig. 1), so that the eigenstates in this region remain
unchanged. Continuity of the wave functions at the
interface

ψe−
α þ

XNprop

β¼1

½ðreeÞαβψeþ
β þ ðrheÞαβψh−

β �

þ
XNev

α0¼1

½cαα0ψN;e
α0 þ dαα0ψ

N;h
α0 � ¼

XN
n¼−N

½aαnψSþ
n þ bαnψS−

n �:

ð10Þ

For every value of α, we project into angular momentum
states with n ¼ −N;…; N. and since the spinors have four
components (spin and particle-hole degrees of freedom)
this yields a system of 8N equations with 2Nprop þ 2Nev þ
4N ¼ 8N coefficients. The system is solved numerically,
and the conductance obtained is shown in Fig. 2(c). In the
single-mode regime, at zero flux and nv ¼ 0 we have
GNS ¼ 0, but at η ¼ 1=2 and nv ¼ 1 (when the super-
conductor is topological), we have GNS ¼ 2e2=h as
expected.
The quantization of GNS can be understood intuitively in

terms of a 1D low-energy model, depicted in Fig. 1(b),
similar to the one describing the Majorana interferometer
proposed in Refs. [36,37]] (see also related studies of
Majorana interferometry with chiral Majorana modes
[45–47] andMajorana bound states [48–57]). In this model,
an incoming chiral mode leaving the source is split into two
Majorana modes that appear at the interface between the
the superconductor and the regions with finite B⊥ [58]. In
the absence of a vortex the two Majorana modes recombine
as an electron on the other side of the wire and return to the
source through the channel of opposite chirality, yielding
GNS ¼ 0. However, if a vortex is present, the two Majorana
modes accumulate a relative phase of π and recombine as a
hole, while a Cooper pair is transferred to the super-
conductor, yielding GNS ¼ 2e2=h.
The quantization of the conductance in our setup is

expected to be robust to disorder to some extent, because
transport in the normal part is mediated by spatially
separated chiral modes. In order to test this robustness we
introduce disorder into the Hamiltonian of a normal wire in
the presence of B⊥, and compute the two-terminal normal
conductance GN of a finite size wire numerically, following
the method of Ref. [59]. The disorder potential has a

correlator hVðrÞVðr0Þi ¼ gððℏvFÞ2=2πξ2DÞe−jr−r0j2=2ξ2D, with
ξD the disorder correlation length and g a dimensionless
measure of the disorder strength. Our data are obtained by
averaging over 103 disorder configurations. The results are
shown in Fig. 3. In the single-mode regime, the conductance
of the normal wire indeed remains quantized to e2=h in the
presence of moderate disorder, as long as the chemical
potential is not very close to zero. The conductance for each
disorder realization is also quantized. A full characterization
of the effects of disorder will be presented in a future
work [44].
Discussion.—An important feature of our proposal is

that all effects induced by the magnetic field are of purely
orbital origin. The Zeeman coupling will be a small
correction at the fields considered, and does not change
our predictions qualitatively [44]. In our setup, a quantized
conductance can be obtained with both B⊥ ¼ 0 and finite
B⊥, but the latter case has several advantages that are worth
stressing. First, the single-mode regime remains accessible
for chemical potentials ranging up to values of the order of
the cyclotron frequency ωc, rather than the finite size gap
π=P. Second, chiral mode transport in the normal part is
robust against finite disorder due to spatial separation of
counterpropagating chiral modes. Third, the spectrum of
the normal part in the presence of B⊥ becomes independent
of B∥, which affects only the superconducting part. B∥ thus
becomes an independent knob driving the transition from a
trivial to a topological superconductor, while the chiral
modes remain intact. In this case, measuring GNS ¼ 0
would represent a genuine consequence of reflection from a
trivial superconductor, as opposed to the B⊥ ¼ 0 case
where this value of GNS could result from an insulating
normal part, see Fig. 2(b).
Our proposal realizes a version of the Majorana inter-

ferometer with some important differences. In our setup,
instead of contacting the two chiral modes separately the
source electrode contacts both channels and the super-
conductor is the drain [3], see Figs. 1(c) and 1(d). In
addition, the original proposals use ferromagnets and a
finite superconducting island to create the Majorana modes,
while our setup uses a bulk superconductor and a homo-
geneous magnetic field [58], making it experimentally
more feasible. Despite these differences, the finite voltage
and finite temperature behavior of GNS will be similar to
those in Refs. [36,37]. This introduces an important
advantage to our setup over current semiconducting wires,
where the temperatures required to observe conductance
quantization are of the order of mK. In our setup, the limiting
temperature is determined by the proximity induced gap
[37]. Assuming Δ0 ≈ 0.1–0.25 meV [11,12,60] this corre-
sponds to 1–3 K.
Finally, we note that screening B⊥ in the superconduct-

ing region requires the use of a superconductor with a high
critical field. For example, the superconductor could be a
Ti=Nb=Ti trilayer as the one used in the experiment in
Ref. [60], which was estimated to have Hcl ¼ 2.5 T.
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