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We argue that a three-dimensional electronic system with the Fermi level at the quadratic band touching
point such as HgTe could be unstable with respect to the spontaneous formation of the (topological) Mott
insulator at arbitrary weak long-range Coulomb interaction. The mechanism of the instability can be
understood as the collision of Abrikosov’s non-Fermi liquid fixed point with another, quantum critical,
fixed point, which approaches it in the coupling space as the system’s dimensionality d → dlowþ, with the
“lower critical dimension” 2 < dlow < 4. Arguments for the existence of the quantum critical point based
on considerations in the large-N limit in d ¼ 3, as well as close to d ¼ 2, are given. In the one-loop
calculation we find that dlow ¼ 3.26, and thus above, but not far from three dimensions. This translates into
a temperature or energy window (Tc, T�) over which the non-Fermi liquid scaling should still be
observable, before the Mott transition finally takes place at the critical temperature
Tc ∼ T� exp½−zC=ðdlow − dÞ1=2�. We estimate C ¼ π=1.1, dynamical critical exponent z ≈ 1.8, and the
temperature scale kBT� ≈ ð4m=melε

2Þ13.6 eV, with m as the band mass and ε as the dielectric constant.
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The electronic systems with Fermi points instead of the
usual Fermi surface represent a new frontier in quantum
condensed matter physics. The most generic among these
are the ones with simple band crossing, such as graphene in
two dimensions and Weyl semimetals in three dimensions,
which feature emerging relativistic invariance at low
energies [1]. The vanishing density of states at the Dirac
point in both of these cases protects the semimetallic states
against the effects of electron-electron interactions, which
need to be above a certain threshold to qualitatively change
the ground state [2]. From the point of view of electron
correlations, maybe a more interesting example is the case
of non-Dirac quadratic band touching (QBT) [3]. Important
examples in two dimensions are provided by the bilayer
graphene, and by surface states of a topological crystalline
insulator [4]. The former is indeed at zero temperature
believed to be unstable towards a broken-symmetry phase
already at infinitesimal interactions [5]. The principal cause
for the instability are the short-range interactions, whereas
the long-range tail of the Coulomb repulsion between
electrons is effectively screened in the presence of the
finite density of states at the touching point, and may
essentially be neglected [6]. For a three dimensional QBT,
such as occurs, for example, in gray tin or HgTe [7], the
physics is, on the other hand, believed to be quite different.
The vanishing density of states in three dimensions now
makes the weak short-range components of the Coulomb
repulsion irrelevant, but the long-range tail of it is, in turn,
not screened. The corresponding coupling constant (here-
after called the “charge”) is a relevant coupling which flows
towards a new, interacting, infrared (IR) attractive fixed
point, at which the system could become a scale invariant

non-Fermi liquid (NFL). This scenario, originally due to
Abrikosov [8], has recently been revisited and put forward
as an explanation of the anomalous low temperature
behavior displayed by pyrochlore iridates [9]. Besides
possibly connecting to experiments [10,11], the basic result
that the 3D electronic system with the chemical potential at
the point of QBT is quite generically a NFL in its ground
state is certainly of fundamental theoretical importance. In
this Letter, we give it therefore another critical look, and
arrive at conclusions different from those existing in the
literature [8,9].
The principal result of our analysis is that the

Abrikosov’s NFL fixed point, besides existing only below
the upper (spatial) critical dimension dup ¼ 4, survives also
only above the lower critical dimension dlow, with
2 < dlow < 4. In a fixed dimension d, the NFL fixed point
survives only for a number N of degenerate QBT points
larger than a certain critical value NcðdÞ. This critical
number is such that Ncð4Þ < 1 and Ncðd → 2Þ → ∞, so by
continuity Ncð3Þ should be finite. The one-loop calculation
for the physical case of N ¼ 1 leads, for example, to
dlow ¼ 3.26, and is thus larger than 3. Directly in three
dimensions, we similarly estimate Ncð3Þ ¼ 2.07. The main
culprits behind the disappearance of the NFL fixed point
are those short-range components of the Coulomb inter-
action, which inevitably become generated during Wilson’s
renormalization group (RG) procedure, and which one is
tempted to discard as irrelevant. We argue that one of these
generated short-range couplings is particularly dangerous;
if large enough, it would cause an opening of the gap in the
spectrum, and a transition into a phase with broken rota-
tional invariance. Such an insulating phase, in materials
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with the band structure equivalent to that of gray tin, for
example, at the mean-field level could be identified as a
strong topological insulator [12].
At zero charge there are therefore two fixed points: the

(IR stable) Gaussian fixed point, and the [ultraviolet (UV)
stable] strong coupling quantum critical point (QCP0)
(Fig. 1). As the value of the charge at the IR stable fixed
point grows with the increase of the parameter ϵ ¼ 4 − d or
by a decrease in N, these two fixed points approach each
other, and ultimately collide in the coupling constant space
at some critical value (Fig. 2). Beyond this critical value of
the charge, at a large ϵ or small N, both fixed points turn
complex, leaving only a runaway flow in the physical space
of real couplings. Such a runaway flow is identified as an
instability towards the Mott insulator. Finally, we show that
if dlow is above but close to the physical dimension d ¼ 3,
there will be a relatively wide range of temperature or
energy over which the scale invariance of the NFL state
should still be manifest. The Mott gap or the transition
temperature are estimated to be ∼1 K in gray tin or HgTe.
The topological Mott insulator would be expected to
display an anisotropic transport, the appearance of the
Dirac-like surface states, and the concomitant characteristic
quantum Hall effect. There should also be a thermody-
namic singularity marking the finite temperature transition,
evident in the specific heat, for example.
Lagrangian and its symmetries.—We are interested in

the 3D system of interacting fermions with the Euclidian
action S ¼ R

dτd~xL, and with the Lagrangian

L ¼ Ψ†ð∂τ þ iaþ dið−i∇ÞγiÞΨ
þ g1ðΨ†ΨÞ2 þ g2ðΨ†γiΨÞ2 þ 1

2e2
ð∇aÞ2: ð1Þ

The summation convention is assumed, Ψ is a four-
component Grassmann field, and the matrices γi,
i ¼ 1;…; 5 provide a four-dimensional (Hermitian)
representation of the Clifford algebra fγi; γjg ¼ 2δij.
dið~pÞ ¼ p2 ~diðθ;ϕÞ are proportional to five spherical
harmonics for the angular momentum of two; explicitly,
~d1þi ~d2¼ð ffiffiffi

3
p

=2Þsin2ðθÞe2iϕ, ~d3þi ~d4¼ð ffiffiffi
3

p
=2Þsinð2θÞeiϕ,

~d5 ¼ ð3cos2θ − 1Þ=2, with θ and ϕ as the spherical angles
in the momentum space [13,14]. Their form assures that
the energy spectrum of the single particle Hamiltonian
H0 ¼ dið~pÞγi featured in L is simply E ¼ �p2, and doubly
degenerate at all momenta.
The scalar field a mediates the long-range ∼1=p2

density-density interaction, or, in real space, ∼1=rd−2.
The contact interactions g1 and g2 will be generated by
the change of the UV cutoff Λ, and we include them
therefore from the outset [15]. Note that the forms of all
interaction terms are invariant under the spinor representa-
tion of the group SOð5Þ, generated by the ten generators
iγiγj, i > j. The kinetic energy term, however, is invariant
only under the real space Oð3Þ rotations.
The HamiltonianH0 is nothing but the standard isotropic

Luttinger Hamiltonian: H0 ¼ ½ð5p2=4Þ − ð~p ~JÞ2�=ð2mÞ,
with ~J as the “angular momentum” 3=2 generators, and
with the band mass set to 2m ¼ 1 [8,9,14]. The form of the
Luttinger Hamiltonian is dictated by the dimensionality of
four of the representation of the crystal’s cubic symmetry,
and the k · p theory near the Γ point [13]. To keep the
discussion simple, we have omitted the remaining
symmetry-allowed terms, proportional to the unit matrix
in the Hamiltonian, which would introduce particle-hole
asymmetry, and the cubic anisotropy [13,16]. These are
also known to be irrelevant in the presence of Coulomb
interaction [8,9]. The dielectric constant of the host
material ε, the band mass m, and the Planck’s constant
ℏ have been absorbed into the charge, which is then
e2 ¼ 2me2el=ð4πℏ2εÞ. eel is the electron’s charge.

FIG. 2 (color online). The flows in the e2-g2 plane for different spatial dimensions d: dlow < d < dup (left, d ¼ 3.5), d ¼ dlow (middle,
d ¼ 3.26), and d < dlow (right panel, d ¼ 3). (g1 has been neglected as qualitatively and quantitatively unimportant for d ≤ 3.5.)

FIG. 1 (color online). The QCP0 and the Gaussian (G) fixed
points in the flow diagram at zero charge.
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The Lagrangian L is also invariant under the trans-
formation Ψ → AΨ, with the unique antilinear operator A.
Choosing γi to be real for i ¼ 1; 2; 3 and imaginary for
i ¼ 4; 5, for example [17], yields A ¼ γ4γ5K. It is then
evident that A2 ¼ −1, and the four-component QBT must
originate from the spin-orbit coupling, since it describes a
particle with a half-integer spin. The six fermion bilinears
Ψ†Ψ and Ψ†γiΨ are then all even under the time reversal,
whereas all ten of iΨ†γiγjΨ are odd.
Renormalization.—Integrating over the fermionic modes

with the momenta fromΛ=b toΛ and with all frequencies at
T ¼ 0 [18] causes the coupling constants to flow according
to the equations,

dg1
d ln b

¼ ðz − dÞg1 −
ðg1 þ e2Þg2

2
−
5g22
2

; ð2Þ

dg2
d lnb

¼ðz−dÞg2þ
2ðg1þe2Þg2

5
−
ðg1þe2Þ2

20
−
63g22
20

; ð3Þ

de2

d ln b
¼ ðzþ 2 − dÞe2 − e4

2
; ð4Þ

after the rescaling of the couplings as 2giΛd−z=π2 → gi and
e2Λd−z−2=π2 → e2, to the leading order. The angular
integrals are performed in d ¼ 3, and the dimensions of
the couplings are counted in general d. The dynamical
critical exponent is z ¼ 2 − ð2e2=15Þ þOðe4Þ.
Equation (4) for the flow of the charge is equivalent to

the previous result [9]. For d > 4 the charge e2 is IR
irrelevant at the Gaussian fixed point, whereas for d < 4 it
is relevant and attracted to the new fixed point. d ¼ 4 is
thus the upper critical dimension. Equation (3) implies
that the (negative) couplings g1 and g2 become generated
by the charge, even if absent initially. We have eliminated
the third SOð5Þ-symmetric coupling that arises by using the
Fierz identity [2] ðΨ†γiγjΨÞ2 ¼ 15ðΨ†ΨÞ2 þ 2ðΨ†γiΨÞ2.
The space (g1, g2, e2) is then closed under the RG to the
leading order.
Quantum critical point at e ¼ 0.—Besides the IR stable

Gaussian fixed point, in any dimension 4 ≥ d > 2 and at
e ¼ 0 there is also a (UV stable) QCP0 at negative values of
both g1 and g2 (Fig. 1). QCP0 approaches the Gaussian
fixed point as d → 2þ, but in d ¼ 3 it is still located at
strong coupling. In order to gain more confidence in its
existence, we consider the Lagrangian in Eq. (1) with
e2 ¼ g1 ¼ 0. Adding a flavor index to fermions as
Ψ → Ψα, α ¼ 1;…; N and then summing over it [19],
the flow equation for g2 in d ¼ 3 and for large N would be
simply [20]

dg2
d ln b

¼ −g2 −
4N
5

g22: ð5Þ

In the large-N limit, on the other hand, the theory is exactly
solved by the saddle-point method, which yields the order
parameter χi ¼ 2g2hΨ†γiΨi self-consistently as

χi ¼ −4g2N
Z

d~p
ð2πÞ3

dið~pÞ þ χiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdjð~pÞ þ χjÞ2

q : ð6Þ

The straightforward analysis of Eq. (6) shows that the
stable saddle point becomes nontrivial for g2 < gc, where

g−1c ¼ 4N
Z

d~p
ð2πÞ3

d2i ð~pÞ − p4

p6
¼ −

4N
5

2Λ
π2

; ð7Þ

without the summation convention in the last line. Note that
the critical coupling is independent of the “direction” in the
five-dimensional space of the components dið~pÞ. The zero
of the flow equation for g2 in the large-N limit corresponds
to the exact critical coupling. Since the quantum phase
transition should persist at all N, we expect that the critical
point at e2 ¼ 0, although located at strong coupling in
d ¼ 3, is indeed a genuine feature of the theory, and present
even when N ¼ 1.
To understand the ensuing ordering we examine the

spectrum when some of the order parameters χi ≠ 0. For
example, if χ1 ≠ 0 (and χi≥2 ¼ 0),

E2 ¼ p4 þ χ21 þ 2χ1d1ð~pÞ ≥ p4 þ χ21 −
ffiffiffi
3

p
p2jχ1j; ð8Þ

with the minimal gap of jχ1j=2 being located at
p2 ¼ ffiffiffi

3
p jχ1j=2, θ ¼ π=2, and ϕ ¼ π=2, 3π=2 (for

χ1 > 0, for example). A similar spectrum with the minimal
gap at two opposite points in the momentum space follows
for every individual χi with i ¼ 1; 2; 3; 4. If χ5 > 0, on
the other hand, the minimal gap of E0 ¼

ffiffiffi
3

p
χ5=2 is at the

entire circle located at p2 ¼ χ5=2 and θ ¼ π=2. Finally, the
spectrum is gapless if χ5 < 0, with the gap closing at two
points at p2 ¼ jχ5j and θ ¼ 0, π.
In all the cases a finite order parameter χi implies

breaking of the Oð3Þ rotational symmetry. Although all
five order parameters have the same critical coupling, a
detailed analysis [21] shows that the energy is minimized
by developing a positive χ5, which leads to the largest
gap in the spectrum. The mean-field Hamiltonian HMF ¼
H0 þ χ5γ5, on the other hand, can be recognized as
describing the system under strain that preserves a rota-
tional symmetry around the z axis [9,22]. Of course, the
choice of the z axis is completely arbitrary; since order
parameters χi transform as l ¼ 2 spherical harmonics under
spatial rotations, the same order parameter with a different
axis of symmetry z0 would be χ0i ¼ χ5 ~diðθ0;ϕ0Þ, with
(θ0, ϕ0) as the polar angles of the axis z0.
The ground state of HMF for χ5 > 0 is therefore an

insulator with a gap. Taking into account the complete band
structure that contained the QBT at the Γ point in gray tin
for example, and computing the parity eigenvalues of the
occupied states at the time-reversal-invariant crystal
momenta leads to the conclusion that the Z2 topological
invariant of such a gapped state is nontrivial [12]. In this
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case the gapped ground state which results from the
Coulomb interaction may be understood as the dynamically
generated strong topological Mott insulator.
Finite charge.—Finally, consider e ≠ 0 and d < 4.

Introducing the parameter ϵ ¼ 4 − d one can control the
magnitude of the charge at the IR stable fixed point:
e2� ¼ 30ϵ=19þOðϵ2Þ. One then finds the Gaussian and
the QCP getting closer in the g1-g2 plane, but remaining
real and separate as long as ϵ < ϵc, with ϵc ¼ 0.74. The
stable NFL fixed point at finite charge descends from the
Gaussian fixed point (Fig. 2, left panel) and has a finite
domain of attraction for dimensions dup > d > dlow, with
the lower critical dimension dlow ¼ 4 − ϵc ¼ 3.26. The
NFL state is scale invariant, with characteristic power-
law response functions, and with z ≠ 2, for example [8,9].
For too negative g1 or g2 and dup > d > dlow the system
spontaneously breaks the rotational symmetry by develop-
ing a positive χ5. For d < dlow, however, the flow is
qualitatively different, and there are no charged fixed
points left (Fig. 2, right panel). Consequently, the flow
is always towards the region with large negative short-
range couplings. The reason for this is physical, and clear
from Eq. (3): The charge generates a negative g2, and thus
favors the development of χ5. In fact, neglecting completely
g1 leads to a qualitatively identical, and even a quantita-
tively very similar picture, in which, for example,
ϵc ¼ 19ð3 − ffiffiffi

7
p Þ=9 ¼ 0.75.

Generalizing to N > 1 requires some care with Fierz
identities, and we only quote here the main results [21]. As
evident already in Eqs. (2)–(3), the critical point QCP0 at
e ¼ 0 becomes weakly coupled as d → 2þ. An infinitesimal
charge is therefore enough to collide the NFL and the QCP
near d ¼ 2. This way one finds thatNcðdÞ ∼ 1=ðd − 2Þ2 and
the possibility of the NFL fixed point disappearing com-
pletely as d → 2. Since, on the other hand, Ncð4Þ < 1,
Ncð3Þ is finite by continuity. We find, from the generaliza-
tion of Eqs. (2)–(4) to finite N, the value Ncð3Þ ¼ 2.07. In
accord with our calculation of dlow, this estimate places the
physical case of d ¼ 3 and N ¼ 1 on the insulating side, but
close to the phase boundary in the (d, N) plane.
Hierarchy of scales.—Although in d ¼ 3 Eqs. (2)–(4)

imply that the ground state is an insulator with broken
rotational symmetry, the system may still be influenced by
the complex fixed point, if its imaginary part is small. By
integrating the flow equations it is easy to show that as
d → dlow− the RG “time” b it takes the short-range
couplings to diverge is

b0 ¼ e
Cffiffiffiffiffiffiffiffiffi

dlow−d
p −BþOðdlow−dÞ

; ð9Þ

with nonuniversal constants C ¼ π=1.1 and B ¼ 2.1. This
means that close to and below the lower critical dimension
the broken-symmetry state will reveal itself only at the
energies (or temperatures) typically much smaller than
the cutoff, leaving possibly a significant window of

temperatures where the NFL scaling in various physical
quantities [9] may still be observable. Such a separation of
scales is a generic consequence of the complexification of
the fixed points under the change of some parameter. Other
examples include the fluctuation-induced first order tran-
sition in superconductors [18,23–25], and chiral symmetry
breaking in three-dimensional quantum electrodynamics
[26,27] and in quantum chromodynamics [28,29].
Time reversal symmetry breaking.—The reader may

object to our elimination of the term ðΨ†γiγjΨÞ2 in favor
of the other two, particularly since the related fermion
bilinear hΨ†iγiγjΨi that violates both the time reversal and
the rotational symmetry would be expected to become
finite in the theory with a term g3ðΨ†iγiγjΨÞ2, i ≠ j [30].
Assuming all short-range couplings to be weak and
allowing them to be generated by the charge, however,
the runaway flow is always towards large and negative g1
and g2. If one of these is traded for the coupling g3, g3
would flow towards large, but positive values. It is easy to
check, on the other hand, that only a large negative g3 (as
defined above) would lead to spontaneous breaking of the
time reversal symmetry.
Experimental relevance.—We can estimate the relevant

energy (temperature) scales for the emergence of the NFL
scaling, as well as for the ultimate Mott transition.
Recalling the definition of the charge, the crossover length
scale at which the NFL behavior sets in is L� ∼ 1=ð4πe2Þ.
Put differently, the corresponding energy scale is

kBT� ∼
e2el
εL�

¼ ℏ2

2mL2�
¼ 4m

melε
2
E0; ð10Þ

where mel is the mass of electron, and E0 ¼ 13.6 eV.
Assuming a band mass as low as m=mel ≈ 1=50 and a high
dielectric constant ε ≈ 30 leads to the crossover temper-
ature T� ∼ 10−100 K. The critical temperature of the Mott
transition is then

Tc ≈ T�b−z0 ; ð11Þ

so that Tc ≈ T�=100, assuming z ≈ 1.8.
Both T� and Tc do not appear to be unobservable in

gapless semiconductors such as grey tin or HgTe, if
prepared sufficiently pure [31]. Doping the system with
electrons or holes introduces a new length scale, which cuts
off the flows we exhibited. If large enough, doping will
restore the usual Fermi liquid. The average separation
between the doped carriers needs to be longer than L� for
the interaction effects discussed here to be relevant.
Conclusion.—We presented arguments that the tail of the

Coulomb interaction in a 3D electronic system with the
chemical potential at the quadratic touching point may lead
to the spontaneous breaking of the rotational invariance,
and the formation of the (topological) Mott insulator at
low temperatures. The mechanism of the instability is the
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collision of Abrikosov’s NFL fixed point with the QCP as
the dimensionality of the system approaches the lower
critical dimension dlow from above. dlow is estimated to be
above and close to three. With the lowering of the temper-
ature, the system, such as very pure HgTe, should first
display a crossover region of an effective NFL scaling,
before the scale invariance is cut off at the critical temper-
ature at which an anisotropic Mott gap opens.
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