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The linear stability of multiple coherent laser beams with respect to two-plasmon-decay instability in an
inhomogeneous plasma in three dimensions has been determined. Cooperation between beams leads to
absolute instability of long-wavelength decays, while shorter-wavelength shared waves are shown to
saturate convectively. The multibeam, in its absolutely unstable form, has the lowest threshold for
most cases considered. Nonlinear calculations using a three-dimensional extended Zakharov model show
that Langmuir turbulence created by the absolute instability modifies the convective saturation of the
shorter-wavelength modes, which are seen to dominate at late times.
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The parametric resonance of oscillators or waves is an
effect that exists in areas of physics as diverse as geo-
physical fluid dynamics and galactic dynamics. Instabilities
caused by the parametric excitation of waves in plasmas
resulting from the presence of large-amplitude electromag-
netic waves are of immediate concern to inertial confine-
ment fusion (ICF) [1,2], high-energy-density physics [3],
and ionospheric modification experiments [4]. Most theo-
retical and numerical works to date have assumed that
instability is driven by a single electromagnetic (EM) pump
wave, despite the fact that almost all ICF and high-energy-
density physics experiments overlap many beams. Recent
indirect-drive experiments on the National Ignition Facility
(NIF) (where 96 beams overlap near each of the two laser
entrance holes of a plasma filled hohlraum) are examples
that highlight the importance of cooperative, multiple beam
parametric instability. In these experiments, a multiple
beam parametric instability known as cross-beam energy
transfer was shown to have a dramatic effect on implosion
symmetry and target performance [5,6]. In direct-drive ICF,
where the fusion target is directly irradiated by many
overlapping laser beams, two-plasmon decay (TPD) can
occur. This problem has been studied for 40 plus years, but
there has been a strong resurgence of interest because of
ignition-scale experiments on the NIF. TPD is important
because it can generate hot electrons, which represent a
preheat risk to the target [7]. TPD is a three-wave decay
instability in which an EM wave of frequency ω0 and wave
vector ~k0 decays into two electrostatic Langmuir waves
(LWs), satisfying the resonance conditions ω0 ¼ ωþ ω0
and ~k0 ¼ ~kþ ~k0, where ω, ω0 and ~k, ~k0 are the frequencies

and wave vectors of the decay LWs, respectively. This
instability can occur in the coronal plasma at electron
densities close to the quarter-critical density nc=4, where
nc½¼ meω

2
0=ð4πe2Þ� is the electron density at which EM

waves are reflected. Here, e and me are the electron charge
and mass, respectively.
A linear three-dimensional numerical stability analysis

of TPD in an inhomogeneous plasma driven by multiple
laser beams is presented. This is followed by an inves-
tigation of the subsequent nonlinear evolution, where
nonlinearity enters by the coupling of the LWs to low-
frequency density perturbations. This model was in part
motivated by a favorable comparison of the results with
more-detailed, fully kinetic calculations in regimes where
they can be compared (i.e., in two spatial dimensions) [8].
The results have completely revised our understanding of
this multiple beam parametric instability. The existence of
two forms of cooperative multiple beam TPD instability is
demonstrated. One form shares short-wavelength, high-
group-velocity, cooperative (or common) LWs that con-
vectively saturate (i.e., the waves undergo a finite spatial
amplification) [9], while the other is associated with shared
long-wavelength, small-group-velocity LWs and is abso-
lutely unstable (i.e., the waves grow in time). The identi-
fication of an absolutely unstable cooperative mode of
instability is a new discovery. Furthermore, it is shown to
have the lowest threshold in most cases. The presence of
absolute instability with a low threshold renders the TPD an
inherently nonlinear problem, the evolution of which is
essentially different in three dimensions (all previous
calculations were performed in two dimensions).

PRL 113, 105001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 SEPTEMBER 2014

0031-9007=14=113(10)=105001(5) 105001-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.105001
http://dx.doi.org/10.1103/PhysRevLett.113.105001
http://dx.doi.org/10.1103/PhysRevLett.113.105001
http://dx.doi.org/10.1103/PhysRevLett.113.105001


The linear stability of multibeam TPD can be inves-
tigated by solving a linearized equation for the envelope of
the electrostatic field [10,11]:

∇ · ½2iωpeðDtþνe∘Þþ3v2e∇2−ω2
peδN=n0�~E1

¼
XN
i¼1

e
4me

∇ · ½∇ð~E0;i · ~E
�
1Þ− ~E0;i∇ · ~E�

1�e−iΩitþSE: ð1Þ

The quantity ~E1 is the complex temporal envelope of

the real electrostatic field ~E ¼ 1=2½~E1ð~x; tÞ expð−iωpetÞ
þc:c:�, where enveloping is carried out at the plasma
frequency ωpe ¼ ð4πn0e2=meÞ1=2 evaluated at the density
n0 ¼ 0.23nc for numerical convenience. In Eq. (1), Dt ≡
ð∂t þ ~u0 ·∇Þ is the convective derivative for a plasma with
the flow velocity ~u0. (Plasma flow is a subdominant effect
giving rise to a 10% to 15% increase in the absolute
threshold for a Mach-1 flow. For simplicity we assume
~u0 ¼ 0.) In the absence of EM pump waves, the free
solutions to Eq. (1) are LWs that propagate in a density
profile whose deviation from n0 is given by δN (δN ≪ n0).
[It has been assumed that the inhomogeneity is linear
(δN ¼ n0x=Ln) and the direction of its gradient defines the
x axis.] LWs of wave number k have the group velocity
Vg ¼ 3kv2e=ωpe, where ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
is the electron

thermal velocity, and their amplitudes damp at the rate
νe ¼ νcoll þ γL, which is the sum of the collisional νcoll and
Landau damping γL contributions. The EM field corre-
sponding to the incident laser light is enveloped at the
carrier frequency 2ωpe and further decomposed into N,

coherent, linearly polarized plane waves ~E0 ¼
P

N
i¼1

~E0;i

exp ið~k0;i · ~x −ΩitÞ having frequencies ω0;i, wave vectors
~k0;i ¼ ðω0;i=cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n0=nc

p
k̂0;i, and intensities Ii ¼ cj~E0;ij2

=ð8πÞ. The quantity Ωi ¼ ω0;i − 2ωpe represents the mis-
match for each beam, where maxðjΩijÞ ≪ 2ωpe. The first
term on the right-hand side of Eq. (1) is the longitudinal
part of the nonlinear current, which is the origin of TPD.
The term SE is a time-random-phase Čerenkov noise source
that is implemented as described in Russell et al. [11] for
homogeneous plasma. The results are not sensitive to the
precise level.
A series of numerical calculations were carried out to

solve Eq (1) on a uniform 1024 × 512 × 512 Cartesian
grid (in the x, y, and z directions, respectively) using a
three-dimensional generalization of the spectral method
that has been described previously [10,11]. In these
calculations, the electron temperature and density scale
length were held constant (Te ¼ 2 keV, Ln ¼ 150 μm),
while the total overlapped intensities Itotð≡P

N
i¼1 IiÞ was

varied for various configurations of N ¼ 1, 2, 4, and 6
beams of 0.351-μm-wavelength light in plastic (CH)
targets ðhZi ¼ 3.5; hZ2i=hZi ¼ 5.3Þ. For each beam con-
figuration, the single-beam intensities Ii and frequencies

ω0;i were taken to be equal to one another, and the beam
wave vectors were distributed symmetrically to fall on the
surface of a right circular cone with a 27° half-angle whose
cone axis is parallel to the x direction. (see inset to Fig. 2).
This choice of wave vectors was made because beams are
distributed in well-defined cones on large laser systems
such as OMEGA [12] and the NIF [13]. The simulation
box length in the density-gradient direction (x) was chosen
to include densities in the range of 0.19 to 0.27 nc
(Lx ¼ 52 μm). The length in the two transverse dimensions
was chosen to be Ly ¼ Lz ¼ 26 μm.
Two-plasmon decay can be absolutely [14] or convec-

tively unstable [15]. Absolute instability corresponds to
unstable eigenmodes that grow temporally, while convec-
tive instability is limited to finite spatial amplification
[16–18]. The threshold intensity for the onset of absolute
instability is found by first extracting the growth rate of the
most-unstable mode, which does not saturate convectively,
for a range of intensities and then finding the intensity
corresponding to zero growth by extrapolation.
Figure 1(a) shows a two-dimensional slice of the LW

intensity spectrum jE1ð~k; tÞj2 in the kz ¼ 0 plane during the
linear growth phase (averaged over times t ¼ 2.4 to 4.2 ps)
for a two-beam (N ¼ 2) calculation. The EM wave vectors
and electric field vectors (polarization) of the two beams lie
in this plane, which is the plane of maximum growth. The
overlapped intensity Itot ¼ 6 × 1014 W=cm2 was chosen to
be above the numerically determined threshold for absolute
growth. In the figure, the bright "doublets" at the spectral
locations centered on wave vectors ~k ≈ ð0.8;�0.4; 0Þk0 and
~k ≈ ð0; 0; 0Þ correspond to temporally unstable (growing)
decay modes that are resonant at ne ¼ 0.245nc. This occurs
even though each beam is individually below the threshold
for absolute growth [19]. This cooperative mode of
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FIG. 1 (color online). The LW spectrum hjE1ðkx; ky; kz ¼
0; tÞj2it averaged over times t ¼ 2.4 to 4.2 ps (a) and t ¼ 12:0
to 15.0 ps (b). The two EMwave vectors ~k0;1 (lower green arrow),
~k0;2 (upper white arrow), and their polarization vectors lie in the
plane shown (kz ¼ 0) (i.e., p polarization). The dashed green
(white) hyperbolas correspond to the maximum single-beam
homogeneous growth rate for beam 1 (2) and the red circle is
the Landau cutoff j~kjλDe ¼ 0.25 (see text for parameters).
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absolutely unstable TPD is analogous to the absolutely
unstable modes seen in single-beam TPD, where the pump
decays into one LW with ~k ∼ ~k0 and another with ~k ¼ �~k⊥,
where j~k⊥j ≪ j~k0j. In the two-beam case, cooperation
occurs because the long-wavelength decays near ~k ≈
ð0; 0; 0Þ can be shared between beams. The other local
maxima in jE1ð~k; tÞj2 located near ~k ¼ ð1.5; 0; 0Þk0 and ~k ¼
ð−0.6;�0.4; 0Þk0 are convectively saturated decays that are
resonant at ne ¼ 0.238nc. These correspond to convective
multiple beam common waves that have been described
previously [9,20] and the “triad” modes discussed in
Refs. [8,21,22]. The convective gain is greatest for spectral
locations where the single-beam homogeneous growth-rate
curves (dashed hyperbolas in Fig. 1) intersect [the maxima at
~k ¼ ð−0.6;�0.4; 0Þk0 correspond to the daughter waves
that are not shared]. The maximum convective gain over all
possible decay modes at the absolute threshold intensity has
been computed numerically by estimating the enhancement
of the saturated wave intensity above the steady-state noise
level supported by SE in Eq. (1). The behavior described
above for two beams is quite generic. Figure 2 shows
jE1ð~k; tÞj2 on the planes ky ¼ 0 and kz ¼ 0 for a four-beam
calculation for the same plasma conditions as in Fig. 1. The
beams are polarized within the x-y plane and predominantly
in the y direction (the projections of ~E0;i on the y-z plane are
parallel to each other, signified by the symbol “∥”) as shown
in the inset. The absolutely unstable modes are not restricted
to a single plane. The bright spectral features near ~k ¼
ð1.0; 0;�0.4Þk0 and ~k ¼ ð−0.2;�0.2; 0Þk0 are again abso-
lute multiple beammodes. The other features in the spectrum
are convectively saturated. The red circles indicate the
Landau cutoff.

The thresholds for cooperative absolute TPD instability
for various configurations of N ¼ 1, 2, 4, and 6 beams are
summarized in Fig. 3. For each configuration, there are
multiple possibilities for the polarization state: “p” and “s”
correspond to the one- and two-beam configurations, where
the polarization is in, or out of, the plane of incidence,
respectively; “rad” and “tan” refer to the polarizations
where the projections of the electric field vectors on the y-z
plane are either radially or tangentially oriented with
respect to the circle that forms the base of the cone
containing the beam wave vectors (see the inset to
Fig. 2); the state signified as ∥ has been defined above.
The thresholds have been quantified by normalizing the
intensity of an individual beam for a given configuration
Is ¼ Itot=N by the independent (single-beam) absolute
threshold given by Simon et al. [19]. For one beam
(N ¼ 1) at normal incidence (θ ¼ 0°), the Simon threshold
[19] is recovered (as expected). [Notice that the threshold is
lowered when the angle of incidence is increased to θ ¼
27° (triangular marker for N ¼ 1 in Fig. 3). The effect of
the oblique incidence was not described in Ref. [19] and we
defer a discussion of this effect to a future publication.] The
cooperative nature of the instability is revealed for N ¼ 2:
for both s and p polarizations the individual (single) beam
intensity at threshold ðIsÞthr is significantly lower than the
expected independent beam value (dashed line)—the
importance of the effect increasing with the number
of beams. If the daughter waves were shared exactly, the
N beams would act as a single beam with N times the
single-beam intensity (see the solid curve in Fig. 3).
Rotating the polarizations of the two beams so as to be
orthogonal (“⊥” in Fig. 3) eliminates the cooperation. The

FIG. 2 (color online). Slices of the LW spectrum hjE1ð~k; tÞj2it
(averaged over times t ¼ 1.0 to 2.0 ps) in the planes ky ¼ 0 and
kz ¼ 0 for a four-beam calculation (∥ polarization). The beam
geometry and polarization are shown in the inset.

FIG. 3 (color online). Normalized single-beam threshold inten-
sities ðIsÞthr for absolute instability with irradiation by N beams
of incidence angle θs ¼ 27° (except where indicated) for various
polarization states (see text). The red numbers are the maximum
convective gains evaluated at the absolute threshold.
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overlapping beams are parametrically unstable (absolutely)
even though the threshold intensity for individual beams
is not exceeded. The solid curve indicates maximum
cooperation (where the collection of beams effectively acts
as a single beam with the combined intensity). Shown in
red are the numerically estimated maximum gains of the
convectively saturated common waves [cf., e.g., Fig. 1(a)]
at an intensity corresponding to the absolute threshold.
These gains are consistent with earlier work [9,15,23]. In
most cases, this gain G is small ðG≲ 2πÞ meaning that the
threshold for the cooperative absolute instability is lower
than that for the convective common waves. The regime of
linear spatial amplification is therefore very restricted.
Above the absolute threshold there exists a competition
between the two modes of cooperative instability, which
can only be addressed by a nonlinear theory.
The dominant mechanisms thought to be responsible for

the nonlinear saturation of TPD (weak turbulence effects
such as the Langmuir decay instability [8,24], profile
modification [8], and the strong turbulence effects of
cavitation and LW collapse [11]) are accounted for by
the substitution δN → δN þ δn in Eq. (1), where the low-
frequency plasma response δn evolves according to

½D2
t þ 2νi∘Dt − c2s∇2�δn ¼ Z

16πmi
∇2

�
j~E1j2 þ

1

4
j~E0j2

�
:

ð2Þ
Here cs ¼ ðZTe=miÞ1=2ð1þ 3Ti=ZTeÞ1=2 is the speed of
ion-acoustic waves whose amplitudes damp with the rate
νi, where mi, Ti, and Z are the ion mass, temperature, and
charge, respectively. The first and second terms on the
right-hand side describe the low-frequency ponderomotive
forces of Langmuir and electromagnetic fluctuations.
Together, Eq. (1), the substitution δN → δN þ δn, and
Eq. (2) constitute the extended Zakharov model of TPD,
previously described in Refs. [10,11,22,25], and now
generalized to three dimensions. In the context of this
turbulence model where the initial ion-acoustic noise is
negligible [i.e., no noise term in Eq. (2)], three regimes
of cooperative TPD behavior have been identified:
(1) ~I½≡Is=ðIsÞthr� < 1 [ðIsÞthr is the single-beam threshold
for cooperative absolute instability (Fig. 3)] where the LW
spectrum is dominated by large-k common waves whose
intensities are amplified spatially by a gain, which is
numerically determined to be small G≲ 3 to 5 (red
numbers in Fig. 3) and consistent with the standard
Rosenbluth expression [9]; (2) ~I ≫ 1—all unstable modes
grow and saturate nonlinearly (the nonlinear development
in this case has been described in terms of cavitating
Langmuir turbulence and investigated in Refs. [8,21,22]);
and (3) the intermediate regime ~I ≳ 1. The intermediate
regime is of direct relevance to spherical and planar target
experiments on the Omega Laser Facility [9,26,27] and it
displays interesting physical effects.

Figure 4 shows the nonlinear temporal evolution of the
LW intensity for the two-beam p-polarized case in the
intermediate regime (~I ≳ 1) (same parameters as Fig. 1).
The other cases shown in Fig. 3 exhibit very similar
behavior and are not shown. The transverse ðy; zÞ average
of the LW intensity hj~E1j2i⊥ðx; tÞ is shown as a function of
the x coordinate and time. At early times, growth is linear.
The LW Fourier spectrum during this phase (indicated
by the lower shaded region) is shown in Fig. 1(a). The
previously identified absolute and convective cooperative
modes occur at different spatial locations (densities) as
indicated by the blue and red dashed lines at ne=nc ¼
0.245; 0.238 in the figure, respectively. The blue (red)
dashed vertical lines indicate the evolution of the absolute
(convective) modes as a function of time (see inset). At
approximately t ¼ 5 ps, the absolutely unstable modes
saturate nonlinearly, producing large density profile mod-
ifications and radiating large-amplitude LWs. These waves
propagate down the density profile [toward lower densities
(smaller x)] with time, generating a region of turbulence
(consistent with previous studies) whose effects can be
seen in the figure. When this turbulence reaches a particular
location, growth is restored to the modes that were
previously convectively saturated [for x ¼ 26 μm (ne=nc ¼
0.23), this occurs at t ∼ 10 ps (see the black line in the inset
to Fig. 4)]. This was verified by performing a linear
analysis on the perturbed profiles. The restoration of
absolute growth in a convectively unstable parametric
instability (i.e., fragility of the Rosenbluth result) caused
by noise or turbulence has been noted previously (cf., e.g.,
Ref. [28]). Here, it is triggered by the nonlinearity of
the absolute instability. The result is that, at late times (e.g.,
the upper shaded region in the figure), the LW spectrum
is much broader and more intense [see Fig. 1(b)] than
during the linear phase [Fig. 1(a)]. The late-time turbulent

FIG. 4 (color online). The transverse averaged LW intensity
hj~E1j2iy;zðx; tÞ as a function of the x coordinate (initial density,
upper axis) and time. The white lines mark the time windows
corresponding to Figs. 1(a) and 1(b). The inset shows the
temporal dependence of hj~E1j2i⊥ðx; tÞ at the locations x ¼
26 μm (black dashed line), x ¼ 31 μm (red dashed line), and
x ¼ 36 μm (blue dashed line).
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spectrum is dominated by large-k common waves with
intensities that are greatly in excess of those predicted by
the linear analysis. The effects of Langmuir wave colli-
sional damping are to change the growth rate in the linear
stages [25] and to modify the time scale for the onset of
subsequent global instability. Despite this, the same uni-
versal scenario still applies.
These results will be of fundamental importance to

direct-drive ICF experiments on the NIF, where many laser
beams overlap on the target (and a knowledge of TPD
stability properties is essential) and are an important
contribution to the understanding of cooperative parametric
instabilities in general. The results obtained with this model
may provide an interpretation of experiments that infer
the coexistence of large- and small-wave-number TPD
LW’s via half- and three-halves-harmonic emission [27,29].
They might also explain the observation of strong TPD
hot-electron production in multiple beam experiments
using OMEGA EP facility, even though the predicted
common-wave convective gains are small [9,20].
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