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A major challenge in quantum metrology is the generation of entangled states with a macroscopic atom
number. Here, we demonstrate experimentally that atomic squeezing generated via nonlinear dynamics in
Bose-Einstein condensates, combined with suitable trap geometries, allows scaling to large ensemble sizes.
We achieve a suppression of fluctuations by 5.3(5) dB for 12 300 particles, from which we infer that similar
squeezing can be obtained for more than 107 atoms. With this resource, we demonstrate quantum-enhanced
magnetometry by swapping the squeezed state to magnetically sensitive hyperfine levels that have
negligible nonlinearity. We find a quantum-enhanced single-shot sensitivity of 310(47) pT for static
magnetic fields in a probe volume as small as 90 μm3.
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Atom interferometry [1] is a powerful technique for the
precise measurement of quantities such as acceleration,
rotation, and frequency [2–5]. Since state-of-the-art atom
interferometers already operate at the classical limit for
phase precision [6,7], given by the projection noise Δθcl ¼
1=

ffiffiffiffi

N
p

[8] for N detected particles, quantum entangled
input states are a viable route for further improving the
sensitivity of these devices.
One class of such states is spin squeezed states, which

outperform the classical limit at a level given by the
metrological spin squeezing parameter ξR with Δθsq ¼
ξRΔθcl [9,10]. In the photonic case, quantum-enhanced
interferometry with squeezed states is routinely employed
in optical gravitational wave detectors [11]. For atoms,
proof-of-principle experiments have shown that spin
squeezed states can be generated in systems ranging from
high-temperature vapors to ultracold Bose-Einstein con-
densates (BECs) [12–21], surpassing the classical limit in
atom interferometry [14,22], atomic magnetometers [19],
and atomic clocks [23,24].
BECs are particularly well suited for applications that

require long interrogation times, high spatial resolution,
or control of motional degrees of freedom, such as in
measurements of acceleration and rotation, due to their high
phase-space density. However, in these systems scaling of
the squeezed states to large particle numbers is intrinsically
limited by density dependent losses, e.g., due to molecule
formation. Keeping these processes negligible implies that,
for larger numbers, the volume has to be increased, which in
turn limits the generation of squeezed states due to uncon-
trolled nonlinear multimode dynamics. Here, we show how
this limitation can be overcome by realizing an array of
many individual condensates with an optical lattice, increas-
ing the local trap frequencies but keeping the density small.
In our experiment, we simultaneously prepare up to 30

independent BECs by superimposing a deep 1D optical

lattice (period 5.5 μm) on a harmonic trap with a large
aspect ratio, which provides transverse confinement [see
Fig. 1(a)]. Each lattice site contains a condensate with
N ¼ 300 to 600 atoms in a localized spatial mode and the
internal state jai ¼ jF;mFi ¼ j1; 1i of the lowest hyper-
fine manifold. Using a two-photon radio frequency and
microwave transition, we apply phase and amplitude
controlled coupling of the states jai and jbi ¼ j2;−1i,
forming an effective two-level system. A magnetic bias
field of 9.12 G brings the system near a Feshbach
resonance, changing the interspecies interaction and lead-
ing to the nonlinearity necessary for squeezed state prepa-
ration. The nonlinear evolution is governed by the one-axis
twisting Hamiltonian H ¼ χĴ2z [25], where the interaction
strength is parametrized by χ, and Ĵz ¼ ðN̂b − N̂aÞ=2 is the
z component of the Schwinger pseudospin. As indicated in
Fig. 1(a), the evolution of an initial coherent spin state
under this Hamiltonian leads to an elongated squeezed state
with reduced quantum uncertainty along one direction.
Details about the experimental sequence, which includes a
spin-echo pulse to reduce the influence of technical
fluctuations during state preparation, can be found in the
Supplemental Material [26].
In order to get access to the axis of minimal fluctuations,

we rotate the state by an angle α around its mean spin
direction. A projective measurement of the population
imbalance z ¼ 2Jz=N ¼ ðNb − NaÞ=N is implemented
by state-selective absorption imaging [see Fig. 1(a)]. The
lower quantum uncertainty of the state translates into
reduced fluctuations of z for repeated experiments, and
is quantified using the number squeezing parameter
ξ2N ¼ NVarðzÞ [26].
High-resolution imaging of the individual lattice sites

allows us to study ξ2N for different system sizes by summing
the populations of several sites [see Fig. 1(b)]. We develop
a relative squeezing analysis that is insensitive to the
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magnetic field fluctuations present in our system (�45 μG
for several days). For that, we divide the lattice in half
and evaluate the difference of the population imbalances
δz ¼ zleft − zright of the two regions [see inset Fig. 1(b)],
which rejects common mode fluctuations. The correspond-
ing squeezing parameter is given by ξ2rel ¼ NtotVarðδzÞ=4
for equal particle numbers on both sides and hzii ≈ 0 [26],
which is directly connected to the quantum enhancement
of gradiometry as described below. We find ξ2rel ¼
−5.3ð5Þ dB for the full ensemble of 12 300 atoms after
20 ms of nonlinear evolution [Fig. 1(b), blue circles]. The
remaining decrease of squeezing for large Ntot is due to the
atom number dependent parameters of the single-site
Hamiltonian. This affects the squeezing as well as the
optimal tomography angles for different ensemble sizes.
From our observations, we infer that by extending our
one-dimensional array (30 lattice sites) to three dimensions
(303 sites), ensembles as large as 107 atoms can be
squeezed to the same level. Exploiting these resources
does not require optically resolving the single lattice sites,
and global population measurements are sufficient during
the detection process.
To compare the scaling of our squeezed state with the

best attainable classical state, we show the values of ξ2rel

obtained for the initial coherent spin state (black dia-
monds), yielding the expected classical shot noise limit.
In the case of squeezed states, even the direct analysis of
summing all ensembles, which does not reject technical
fluctuations, yields squeezing of ξ2N ¼ −1.3ð6Þ dB for
12 300 particles [Fig. 1(b), open blue squares]. For all
given variances, the independently characterized photon
shot noise of the detection process was subtracted.
Figure 1(c) shows the tomographic characterization of

fluctuations for different readout rotation angles α for the
ensemble containing 104 particles, revealing the expected
sinusoidal behavior. The difference between the relative
and the direct analysis is consistent with an independent
characterization of the technical noise [26] and can be
further reduced with an optimized spin-echo pulse.
A natural application of atomic squeezed states is the

measurement of magnetic fields, where BECs are an ideal
system to achieve both high sensitivity and spatial reso-
lution [22,46,47]. We implement a quantum-enhanced
magnetometer using a modified Ramsey sequence that
coherently transfers the population of one level to a
different hyperfine state for the interrogation time. The
advantage of this state swapping is twofold: the nonlinear
interaction becomes negligible on our interferometric
time scales, and the magnetic sensitivity is significantly
increased from ≈1 Hz=μT (second order Zeeman shift at
the operating field of B0 ¼ 9.12 G) to S ≈ 140 Hz=μT
(first order Zeeman shift). Figure 2(a) depicts the imple-
mented experimental sequence. After generating the
squeezed state in the levels jai and jbi (left panel), we
rotate it for maximum phase sensitivity (middle panel). The
interrogation time tint of the Ramsey sequence starts with a
microwave π pulse (tπ) which swaps the level jbi of the
phase squeezed state to the level jci ¼ j1;−1i, yielding
increased magnetic sensitivity (right panel). After a hold
time thold, we swap the state back to the original level.
During this sequence, the state acquires a phase
φ ¼ 2π½SðB − B0Þ þ δ�ðthold þ 2tπÞ, where δ describes
the relative detuning of the π pulse. A Ramsey fringe is
obtained by a final π=2 rotation with varied pulse phase ϕ.
First, we confirm that the level of squeezing is

maintained during state swapping by performing an inter-
ferometric sequence with thold ¼ 1 μs followed by a tomo-
graphic analysis [Fig. 2(b)]. We find ξ2rel ¼ −5.1þ0.6

−0.7 dB at
the optimum tomography angle and a Ramsey fringe
visibility of V ¼ 0.950ð5Þ [Fig. 2(c)], revealing no
significant reduction of the squeezing initially present.
Without subtraction of detection noise, we find squeezing
of −3.8ð5Þ dB, which corresponds to metrologically rel-
evant spin squeezing of −3.4ð5Þ dB for the visibil-
ity V ¼ 0.95.
Since the single lattice sites are statistically independent,

the single shot magnetic field sensitivity using this resource
can be extracted from a differential measurement. This
rejects common mode fluctuations of homogeneous fields,
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FIG. 1 (color online). Scaling squeezing to large ensemble
sizes. (a) Independent squeezing (displayed on generalized Bloch
sphere) of 25 binary BECs in a 1D lattice gives access to large
atom numbers by summing over adjacent lattice sites. (b) Scaling
of the squeezed state after 20 ms of nonlinear evolution. A
relative analysis using adjacent parts of the lattice (inset) yields
ξ2rel ¼ −5.3ð5Þ dB for the full sample of 12 300 atoms (blue
circles), compared to ξ2N ¼ −1.3ð6Þ dB using direct analysis
(open squares). The corresponding measurement for an initial
coherent spin state (black diamonds) is at the classical shot noise
limit. (c) Analysis for different tomography rotation angles α and
12 300 atoms shows the sinusoidal behavior from the redistrib-
uted uncertainties for direct (open squares) and relative analysis
(filled circles). Error bars are the statistical 1 s.d. error.
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which would, otherwise, mask the actual sensitivity of the
device. A magnetic field difference δB between the left and
right part of the ensemble translates into a differential phase
δφ of the Ramsey fringes [Fig. 3(a)]. For a fixed pulse
phase, this shows up as δz, the difference of the corre-
sponding population imbalances. The optimal working
point for estimating magnetic fields is close to the zero-
crossings of the Ramsey fringes, where δz is maximal. At
this point, the difference in the magnetic field can be
deduced as δB ≈ ðδzÞmax=2πtintSV with the interrogation
time tint ¼ thold þ 2tπ . The single shot magnetic field
sensitivity around the optimal working point follows from
error propagation in the expression for δB using the
measured values for VarðδzÞ [26]. We find quantum-
enhanced sensitivity up to interrogation times of 342 μs
[see Fig. 3(b)]. For longer times, quantum enhancement is
lost due to fluctuations of the magnetic field which translate
into a significant reduction of the mean Ramsey contrast.
We do not observe a decrease in single-shot visibility,
indicating that no coherence is lost on these time scales.

For tint ¼ 342 μs and the full ensemble, we find a
quantum-enhanced single shot sensitivity for static mag-
netic fields of 310(47) pT compared to the shot noise
limit of 382 pT for a perfect classical device (same atom
number, no detection noise, and V ¼ 1). With our current
experimental duty cycle (36 s production, 342 μs inter-
rogation), we realized a sub–shot-noise sensitivity of
1.86ð28Þ nT= ffiffiffiffiffiffi

Hz
p

for static magnetic fields. The perfor-
mance of our magnetometer is competitive with state-of-
the-art devices with comparably small probe volume [48],
such as micro-superconducting quantum interference devi-
ces or nitrogen vacancy centers (see [26] for an overview).
The ultimate physical limitation is the residual nonlinearity
of the employed states, which implies that further improve-
ment of the sensitivity by at least 2 orders of magnitude
can be achieved by increasing the interrogation time. Thus,
for an interrogation time of 250 ms [46] and assuming a
realistic cycle time of 5 s for an all-optical BEC apparatus, a
sensitivity of ∼1 pT=

ffiffiffiffiffiffi

Hz
p

in a probe volume of just
90 μm3 is feasible.
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FIG. 2 (color online). Swapping squeezed states for a quantum-
enhanced Ramsey scheme. (a) After 20 ms of nonlinear evolution
on all lattice sites (left panel), the squeezed states are rotated
to the phase sensitive axis (middle panel). By swapping the
population from state jbi to jci, the nonlinearity is effectively
switched off and the magnetic field sensitivity is significantly
enhanced (right panel). After magnetic field-dependent phase
evolution, the population is swapped back before readout.
(b) Squeezing tomography after a hold time of 1 μs (negligible
magnetic field phase) confirms relative squeezing of ξ2rel ¼
−5.1þ0.6

−0.7 dB [−3.8ð5Þ dB with detection noise] after swapping
and readout. (c) Ramsey fringe for a final π=2 pulse with variable
readout phase Φ yields a visibility of V ¼ 0.950ð5Þ. This implies
metrologically relevant spin squeezing of −3.4ð5Þ dB and direct
applicability of the system for quantum-enhanced gradiometry.
Error bars are the statistical 1 s.d. error.
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FIG. 3 (color online). Ramsey magnetometry beyond the
standard quantum limit. (a) A magnetic field gradient translates
into a phase shift of the corresponding Ramsey fringes for left
and right parts of the full sample (upper panel for tint ¼ 342 μs).
The difference in population imbalance δz ¼ zleft − zright is
maximal at the zero crossings of the individual fringes (lower
panel). (b) Magnetic field sensitivity of the Ramsey magnetom-
eter versus interrogation time. For the full sample, we find
quantum-enhanced performance up to interrogation times of
342 μs with a single shot sensitivity of 310(47) pT for static
magnetic fields. For longer times, we are limited by fluctuations
of the magnetic field. The shaded area depicts the region which
is accessible for nonentangled states, the dashed line indicates
the standard quantum limit including detection noise. Error bars
show the statistical 1 s.d. confidence intervals obtained from a
resampling method.
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Our array of BECs is ideally suited for gradiometric
measurements. The sensitivity for magnetic field gradients
depends on interrogation time, the distance between the
detectors (baseline length), and the noise of the magnetic
field detection. We find the expected linear dependence
of the signal amplitude ðδzÞmax on interrogation time, as
shown in Fig. 4(a). The gradiometric sensitivity for the
specific interrogation time of 342 μs as a function of
baseline length is shown in Fig. 4(b). Using single wells
with varying distances, we find the expected linear gain in
gradient sensitivity with baseline length (triangles) and

observe quantum enhancement beyond the respective
classical limits (dashed line).
The single shot sensitivity of the gradiometer can be

further improved to 12ð2Þ pT=μm by summing up to 20
adjacent lattice sites, exploiting the scalability of the
squeezed state, and leading to an effective baseline length
of up to 50 μm [Fig 4(b), squares]. This corresponds to a
quantum-enhancement of 24%, as expected from the
independently determined 2.4 dB of squeezing [see
Fig. 2(b) at α ¼ 90°, here, without subtraction of detection
noise]. Specifically for our experiment, we determine the
magnetic field gradient to be ∂Bz=∂x ¼ 19.6ð6Þ pT=μm.
The high spatial resolution, combined with the excellent

magnetic field sensitivity, makes the array of spin squeezed
BECs an ideal system for magnetic field microscopy,
where squeezing allows for enhanced sensitivity at small
length scales. In contrast to atoms magnetically trapped on
atom chips, optical confinement also allows vector field
reconstruction with high spatial resolution.
In conclusion, we demonstrated the scalability of

squeezed ensembles in an optical lattice, directly applicable
to high-precision atom interferometry with ultracold
clouds. We show that swapping of squeezed states is
experimentally feasible and allows both for control of
nonlinear interaction and the field sensitivity. Both advan-
tages are explicitly demonstrated with quantum-enhanced
Ramsey magnetometry, achieving high sensitivity and
spatial resolution. The flexibility of state swapping with
large squeezed ensembles offers prospects for improved
tests of general relativity or the detection of gravitational
waves with atom interferometers employing motional
degrees of freedom [49,50], controlled by Raman beam
splitters. From a more fundamental perspective, the system
of several independent ensembles entangled in the internal
degrees of freedom combined with adjustable tunnel
coupling is a perfect starting point to study the spread of
quantum correlations [51,52] in the continuous variable
limit and the role of entanglement in quantum phase
transitions [53,54].
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FIG. 4 (color online). Magnetic field gradiometry with an
array of condensates. (a) A magnetic field gradient is deduced
from the fringe amplitude of δz (insets), which grows linearly
with interrogation time (blue circles and linear fit). We find
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