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We investigate the new soft graviton theorem recently proposed by Cachazo and Strominger. We use the
Cachazo-He-Yuan formula to prove a universal behavior for both Yang-Mills theory and gravity scattering
amplitudes at the tree level in arbitrary dimension.
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Introduction.—Strominger et al. proposed that a certain
infinite-dimensional subgroup of the Bondi–van der Burg–
Metzner–Sachs (BMS) supertranslation group is an exact
symmetry of the quantum gravity S matrix [1]. Weinberg’s
soft theorem [2] is a Ward identity for this subgroup [3].
Cachazo and Strominger [4] further investigated

the subleading terms Sð1Þg and Sð2Þg in the soft graviton
expansion

Mnþ1 → ðSð0Þg þ Sð1Þg þ Sð2Þg ÞMn ð1Þ

of the (nþ 1)-graviton scattering amplitude and conjec-

tured that Sð1Þg is also universal. (The form of these
subleading terms was known before Ref. [5].) Taking q
to be the momentum and ϵμν to be the polarization tensor of
the soft particle, Weinberg’s soft factor is

Sð0Þg ¼
Xn
a¼1

ϵμνk
μ
akνa

q · ka
; ð2Þ

while the terms Sð1Þg and Sð2Þg are given by

Sð1Þg ¼
Xn
a¼1

ϵμνk
μ
aðqλJλνa Þ
q · ka

; Sð2Þg ¼
Xn
a¼1

ϵμνðqρJρμa ÞðqλJλνa Þ
q · ka

:

ð3Þ
Both subleading factors depend on the total angular
momentum operator Jμνa ¼ Lμν

a þ Sμνa of the ath particle.
Here, Lμν ¼ k½μð∂=∂kν�Þ, and the spin factor Sμν can be
deduced from the condition ϵμνkμ ¼ 0. Thus,

Sμν;g ¼ ϵσ½μ
∂

∂ϵν�σ þ ϵσ½μ
∂

∂ϵσν� : ð4Þ

In Yang-Mills theory, a similar factor was described in
Ref. [6] where the color-stripped amplitude has the soft limit

Anþ1 → ðSð0ÞYM þ Sð1ÞYMÞAn; ð5Þ

and the operators Sð0ÞYM and Sð1ÞYM are

Sð0ÞYM ¼
X
signed
aadjacentq

ϵ · ka
q · ka

; Sð1ÞYM ¼
X
signed
aadjacentq

ϵμqνJ
μν
a

q · ka
: ð6Þ

Here, the condition ϵ · k ¼ 0 leads to the spin angular
momentum operator Sμν;YM ¼ ϵ½μð∂=∂ϵν�Þ. Gauge invari-
ance of the Yang-Mills factor is derived from the antisym-
metry in the indices. In gravity, gauge invariance of Sð1Þ
follows from global conservation of angular momentum
while for Sð2Þ it is the antisymmetry of Jμν. Relations
(1)—(3) were proved in Refs. [4,6] for tree-level amplitudes
using Britto-Cachazo-Feng-Witten (BCFW) recursion rela-
tions [7] in the spinor-helicity formalism using a holomor-
phic limit as proposed in Ref. [8]. Apart from the BCFW
recursion relations, these technologies are not available in
all dimensions.
Cachazo, He, and Yuan (CHY) proposed a compact inte-

gral formula [9] for tree-level scattering amplitudes of scalar
ϕ3, (pure)Yang-Mills, andgravity theories in arbitrarydimen-
sion. The amplitudes are given by an integral over points on
a sphere that satisfy a set of algebraic equations, called
the scattering equations. This formula generalizes the twistor
string connected prescription forN ¼ 4 SYM theory [10] to
scalar, gauge, and gravity theories in arbitrary dimension.
In this Letter we perform a next-to-leading order

expansion of the CHY integral in the presence of a soft
particle in Yang-Mills theory and in gravity. This expansion
can be used to compute the subleading soft factor for tree-
level scattering amplitudes of these theories formulated on
d-dimensional space-time. We show that the subleading

soft factors Sð1Þg and Sð1ÞYM take the same, universal form
n all dimensions. Given the momentum space form of
both the subleading factors (3) and the CHYamplitude, this
is not unexpected because neither explicitly references
dimension. However, it is also very surprising since the
original conjecture of the universal subleading soft factors
was based on the BMS symmetry principle, which is only
available in four dimensions [11].
It would be very interesting to see how the subleading

factors get corrected at loop level (see Ref. [12] for loop
corrections). Given the recent progress [13] in determining
a stringy action principle for the derivation of the CHY
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form of scattering amplitudes, it might also be possible to
determine the symmetry principle generating the sublead-
ing terms in dimensions other than four. We hope that
further work will clarify these questions.
Review of the CHY formula.—The CHY formula for

tree-level scattering amplitudes MðsÞ
n is

Z
dnσ

volSLð2;CÞ
Y

a
0δa

�
trðTa1…TanÞ
σ12σ23…σn1

�
2−s

Pf 0 ðΨÞs; ð7Þ

where the “power” s indicates whether the integral com-
putes colored ϕ3 theory (s ¼ 0), (pure) Yang-Mills theory
(s ¼ 1), or gravity (s ¼ 2) scattering amplitudes and
σij ¼ σi − σj. In the following, we frequently suppress
volSLð2;CÞ. The δ distributions

δa ¼ δ

�X
b≠a

ka · kb
σa − σb

�
ð8Þ

impose n − 3 “scattering equations”

X
b≠a

ka · kb
σa − σb

¼ 0; ð9Þ

hence, the primed product
Q

a
0 ¼ σijσjkσki

Q
a≠i;j;k where

i; j; k may be chosen freely. The integral is to be taken
over a sphere with n punctures σi. Because of SLð2;CÞ
invariance, three of these σi can be set to fixed values,
such that the integral is n − 3 dimensional. It is entirely
fixed by the solutions to the scattering equations. We will
be interested in gravity (s ¼ 2) and gauge theory (s ¼ 1),
as the soft limit of scalar amplitudes is identically zero
already at leading order. In Yang-Mills theory, we will
strip off the color factor trðTa1…TanÞ and work exclusively
with color-ordered amplitudes.
The factor Pf 0 Ψ is the Pfaffian of the 2n × 2n-

dimensional matrix

Ψ ¼
�
A −CT

C B

�
ð10Þ

with

Aab ¼
� ka·kb

σab
a ≠ b

0 a ¼ b
; Cab ¼

8>><
>>:

ϵa·kb
σab

a ≠ b

−
P
c≠a

ϵa·kc
σac

a ¼ b

ð11Þ

while B looks just like A with k → ϵ. Since the matrix Ψ is
singular, its Pfaffian is identically zero Pf Ψ ¼ 0. The CHY
integral, therefore, prescribes the use of the “reduced
Pfaffian” (indicated by the prime)

Pf 0Ψ ¼ 2
ð−1Þiþj

σij
PfΨij

ij; ð12Þ

where Ψij
ij is Ψ with the ith and jth row and column

removed.
In Ref. [9], it was shown that the integral has the correct

behavior in the limit of a graviton or a photon momentum
going soft to leading order. We compute the next order
factor in this expansion.
To begin, expand

Q
aδa in the presence of a soft particle.

We choose the nth site to be the soft particle, i.e., kn → εkn,
ε ≪ 1. There are ðn − 1Þ − 3 scattering equations that
contain only one kn in the sum and one scattering equation
which is proportional to kn. As the variables in the δ
distributions are complex and the integrand does not
contain branch cuts, we may treat the δ distributions as
poles. This allows us to rewrite the product

Q
a
0δa as

1

ε
P

b≠n
kn·kb
σn−σb

Y
a≠n

0 1

ε ka·kn
σa−σn

þP
b≠a;n

ka·kb
σa−σb

: ð13Þ

The second factor may be exactly expanded in a sum

Y
a≠n

0 X∞
i¼0

εi

i!

�
ka · kn
σan

�
i
δðiÞ

�X
b≠a;n

ka · kb
σab

�
: ð14Þ

Here, we denote δðiÞðxÞ ¼ ½ð−1Þii!�=ðxiþ1Þ. For the
Pfaffian, we may employ the useful expansion

Pf A ¼
X2n
q¼1
q≠p

ð−1ÞqapqPf Apq
pq: ð15Þ

The leading term in the expansion for p ¼ n is given by

q ¼ 2n such that Pf 0 Ψ → CnnPf 0Ψ
nð2nÞ
nð2nÞ. Since we are also

interested in the subleading terms, we need to look at the
full expansion. Expanding along the row p ¼ n, each
coefficient apart from q ¼ 2n in the above expansion will
be of order ε. More precisely, it is

Pf 0 Ψ ¼ −CnnPf 0 Ψ
nð2nÞ
nð2nÞ þ ε

X2n−1
q¼1
q≠i;j;n

ð−1Þq½ ~Ψij
ij�nqPf 0Ψnq

nq ð16Þ

with

½ ~Ψij
ij�nq ¼

8<
:

kn·kq
σnq

q ≤ n

kn·ϵq−n
σnðq−nÞ

q > n and q ≠ 2n:
ð17Þ

The authors of Ref. [9] used the fact that Pf 0Ψnð2nÞ
nð2nÞ is

actually independent of kn and ϵn and represents the correct
factor for the n − 1 particle amplitude to leading order. At
subleading order, there are still some terms proportional to
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kn in PfΨnð2nÞ
nð2nÞ. The other Pfaffian minors similarly contain

kn and ϵn. Therefore, we will also have to expand these
other minors along the row (2n); i.e., we use Eq. (15) twice

PfA¼
X

1≤q<s≤2n
ð−1Þqþsðapqars −apsarqÞPf ðApq

pqÞrsrs: ð18Þ

This will not provide us with another factor of ε. We will
return to the importance of this second recursion and the

subleading terms in PfΨnð2nÞ
nð2nÞ in due course.

The interesting subleading soft factor in gauge theory
and gravity is a single derivative operator [4,6]. It can,
therefore, be extracted from the expansion of the δ
distributions and the leading terms in the Pfaffian recursion
alone. However, the spin part Sμν of the angular momentum
operator Jμν will not show up in this calculation since the
scattering equations are explicitly independent of the
polarization vectors ϵa. The action of Sμν can be seen in
the Pfaffian expansion.
The numerators of the soft factors follow from the

leading order of the Pfaffian expansion (16). The absence
of the Pfaffian in the scalar case (s ¼ 0) leads to the
vanishing of the amplitude in the case of a scalar soft
particle. In the following section, we investigate how the
subleading soft factor emerges for gluon scattering
amplitudes in arbitrary dimensions. Then, a similar analysis
is done for graviton scattering amplitudes in the following
section.
Subleading soft factor in Yang-Mills theory.—The

expansion in Eq. (14) is exact. The i ¼ 0 case will produce
the already known leading soft factor. For our purposes
we need only the i ¼ 1 term in the expansion of the δ
distribution. Since this provides us with a factor ε, we will
not have to worry about subleading terms in the Pfaffian
recursion for now. We write

ε
X
r≠i;j;k

�
kn · kr
σnr

�
δð1Þ

�X
b≠r;n

kr · kb
σrb

�Y
a≠r;n

0δa: ð19Þ

Note first how the product now excludes the set
fi; j; k; r; ng of indices and second the presence of the
derivative on one of the δ’s. Using only the leading factor

coming from the Pfaffian (CnnPf 0Ψ
nð2nÞ
nð2nÞ), we may extract

the subleading contribution of Eq. (6) to the soft factor for
color-ordered gluon scattering amplitudes from

Z
dnσ

P
b≠n

ϵn·kb
σnbP

b≠n
kn·kb
σnb

σn−1;1
σn−1;nσn;1

X
r
0 kn · kr
σnr

δð1Þr

Y
a≠r

0δaIn−1:

ð20Þ
In−1 indicates that the rest of the integrand does not depend
on σn. It is convenient to set i ¼ 1 and j ¼ n − 1 in the
primed product and sum for the following calculation of
the residues. The integrand is regular for σn → ∞ just as in

the leading case. Thus, the integral over σn can be treated as
in the leading case by deforming the contour. The only
contributing poles are σn ¼ σ1, σn ¼ σn−1, and also σn ¼
σr for every r ≠ 1; n − 1; k (k arbitrary) in the sum. In each
case, the first fraction reduces to ðϵn · kmÞ=ðkn · kmÞ for
m ¼ 1; n − 1; r. The second fraction is only interesting in
the case σn ¼ σr as it is otherwise equal to unity. In the
interesting case, one rewrites

σn−1;1
σn−1;rσr;1

¼ σn−1;r þ σr1
σn−1;rσr;1

ð21Þ

to get two terms. Putting this together, Eq. (20) reduces to a
sum of four terms
Z

dn−1σ
X

r≠n
0
�
ϵn · k1
kn · k1

kn · kr
σ1;r

−
ϵn · kr
kn · kr

kn · kr
σ1;r

þ ϵn · kr
kn · kr

kn · kr
σn−1;r

−
ϵn · kn−1
kn · kn−1

kn · kr
σn−1;r

�
δ0r
Y

a≠r
0δaIn−1:

ð22Þ
Now finally, we inspect the four terms and notice that they
can be recovered from an operator of the form

Sð1Þ ¼ ϵnμknνJ
μν
1

kn · k1
−
ϵnμknνJ

μν
n−1

kn · kn−1
ð23Þ

acting on the product of δ distributions. This operator
takes the exactly the same form as the operator for four
dimensions [6].
As indicated above, finding the subleading soft factor

from the Pfaffian recursion relation (18) and the order ε
terms in the leading piece of the Pfaffian is more compli-
cated. However, it can be done in the same way as above:
First we use the leading order (i ¼ 0) in the expansion
of the δ distributions. It is then necessary to write out the
order ε terms from the Pfaffian. This contains the pieces
from the leading order and also the pieces of order ε from
Eq. (16). It is useful to use Eq. (18) with p ¼ n and r ¼ 2n,
which produces an expansion of the Pfaffian for n − 1
particles. Investigating the integrand reveals that it is regular
at infinity and there are no branch cuts, so a contour
deformation is possible. After the integration the terms
can be reassembled into the form of a sum of derivative
operatorsD acting on the PfaffianDPf A ¼ Pf AtrðA−1DAÞ
where A is the n − 1 particle matrixΨ. In fact, the terms can
be recovered from the use of the operator (23) on the n − 1
particle Pfaffian. At this point, we can also see the action of
the spin part Sμν of the angular momentum operator, since
there are terms in the Pfaffian expansion that cannot be
recovered from the action of the orbital angular momentum
operatorLμν alone. For a detailed calculation, please refer to
the Supplemental Material [14].
Subleading soft factor in gravity.—A similar analysis

can be done for graviton scattering amplitudes. We use the
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expansion of the δ distribution in Eq. (19). Since s ¼ 2,
there are two Pfaffian contributions. Thus, there is a pole
for every particle in the amplitude

Z
dnσ

ðPb≠n
ϵn·kb
σnb

Þ2P
b≠n

ϵn·kb
σnb

X
r
0 kn · kr
σnr

δð1Þr

Y
a≠r

0δaIn−1: ð24Þ

Because of the coefficient ðkn · krÞ=σnr of the expansion of
the δ distribution, there is no simple pole at σn ¼ σr for
every r. Instead, there is a double pole at this point. We will
return to this issue shortly. Upon the use of the residue
theorem in the above prescribed manner, the simple poles
yield a second sum

P
b≠r, such that

Z
dn−1σ

X
r
0X
b≠r

ðϵn · kbÞ2
kn · kb

kn · kr
σbr

δð1Þr

Y
a≠r

0δaIn−1: ð25Þ

We may also consider the case of two Pfaffian factors that
depend on different polarization vectors ϵi and ~ϵi. Then
ðϵn · krÞ2 → ðϵn · krÞð~ϵn · krÞ in the expressions above.
This is one part of the expression one would get from

acting with an operator

Sð1Þ ¼
Xn−1
a¼1

ϵn · kaϵnμknλJ
λμ
a

kn · ka
ð26Þ

on the product of δ distributions. Where is the rest?
Interestingly, it hides in the second-order poles. To find
it, we have to make use of Cauchy’s integral formula

fð1Þðz0Þ ¼
1

2πi

I
fðzÞdz
ðz − z0Þ2

ð27Þ

on the second-order poles σn ¼ σr and act with a σn
derivative on the residue before setting σn ¼ σr. After
simplifying the result of the integration, one finds

Z
dn−1σ

X
r
0X
b≠r

�ðϵn · krÞ2kn · kb
kn · krσrb

− 2
ϵn · krϵn · kb

σrb

�

× δð1Þr

Y
a≠r

0δaIn−1: ð28Þ

Adding Eqs. (25) and (28) produces all the terms expected
from the action of the operator of Eq. (26) acting on the
group of δ distributions. As before, one can also look at the
result with two Pfaffians depending on different polariza-
tion vectors ϵ and ~ϵ. This amounts to setting ðϵnkrÞ2 →
ðϵnkrÞð~ϵnkrÞ and 2ðϵnkrÞðϵnkbÞ → ðϵnkrÞð~ϵnkbÞ þ ϵ↔~ϵ
in Eq. (28).
Note how the primed product prevents us from seeing

the subleading factor in the case of the four-particle
amplitude. This is in accord with the low-n examples of

the action of the subleading factor as given in Ref. [4] and a
nice check of the result.
We performed the analysis for the Pfaffian-squared term

in the integral. The major complication of the calculation
for the Pfaffian factor with respect to the Yang-Mills case is
the presence of poles as well as double poles for every
particle due to the interaction of the leading Cnn Pf 0 Ψn−1
piece with the order ε terms from the second Pfaffian.
However, the calculation uses the same technology as the
Yang-Mills case.
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