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Three-dimensional self-gravitating systems do not evolve to thermodynamic equilibrium but become
trapped in nonequilibrium quasistationary states. In this Letter, we present a theory which allows us to
a priori predict the particle distribution in a final quasistationary state to which a self-gravitating system
will evolve from an initial condition which is isotropic in particle velocities and satisfies a virial constraint
2K ¼ −U, where K is the total kinetic energy, and U is the potential energy of the system.
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Unlike systems with short-range forces which relax to
thermodynamic equilibrium starting from an arbitrary
initial condition, systems with long-range interactions
become trapped in nonequilibrium quasistationary states
(QSS), the lifetime of which diverges with the number of
particles [1–9]. For interaction potentials unbounded from
above, the QSS have been observed to have a characteristic
core-halo structure [10]. The extent of the halo is deter-
mined by the parametric resonances which arise from the
collective density oscillations during the relaxation process
[11]. The dynamics of 3D self-gravitating systems, how-
ever, is significantly more complex due to the existence of
unbound states [12,13]. Indeed, Newton’s gravitational
potential is bounded from above so that the parametric
resonances may actually transfer enough energy to allow
some particles to completely escape from the gravitational
cluster [13,14]. This makes the study of 3D self-gravitating
systems particularly challenging [15,16]. Recently, how-
ever, it was shown that if the initial particle distribution
function is isotropic in velocity and satisfies the so-called
virial condition (VC), density oscillations and parametric
resonances will be suppressed [17–20]. The relaxation to
equilibrium will then proceed adiabatically. In the thermo-
dynamic limit, each particle of the gravitational cluster will
evolve under the action of a quasistatic mean-field poten-
tial, and the phase mixing of particle trajectories will lead to
a nonequilibrium QSS. In this Letter, we will show that it is
possible to a priori predict the density and the velocity
distribution functions within the QSS to which a 3D
gravitational system will evolve if the initial distribution
is isotropic in particle velocities and satisfies the VC.
The virial theorem requires that a stationary gravitational

system must have 2K ¼ −U, where K is the total kinetic
energy and U is the potential energy. This, however, does
not mean that an arbitrary initial distribution which satisfies
the VC will remain stationary. To be stationary, a distri-
bution function must be a time-independent solution of the
collisionless Boltzmann (Vlasov) equation [21–23]. From
Jeans’s theorem, this will only be the case if the distribution

depends on the phase space coordinates solely through the
integrals of motion [24]. Recently, however, it was shown
that if the initial particle distribution f0ðr;pÞ is spherically
symmetric and isotropic in velocity, f0ðr;pÞ ¼ f0ðr; pÞ,
and satisfies the VC, strong density oscillations will be
suppressed, and the relaxation to QSS will be intrinsically
different than for initial distributions which do not satisfy
the VC [10,25]. In principle, a spherically symmetric
distribution does not need to be a function of the modulus
of momentum. A spherical symmetry is compatible with
the distribution being a function of both radial and angular
momentum independently. The assumption of isotropicity
is included to prevent the radial orbit instability (ROI)
which leads to spontaneous symmetry breaking of the
distribution function. ROI can occur when kinetic energy of
the system is dominated by the radial velocity component
[26,27]. On the other hand, for isotropic velocity distribu-
tions, symmetry breaking occurs only when the initial
distribution deviates strongly from the VC [28]. For initial
particle distributions isotropic in velocity and satisfying the
VC, relaxation to equilibrium is a consequence of phase
mixing of particle trajectories [29], while for nonvirial
initial conditions, relaxation results from the excitation
of parametric resonances [11] and a nonlinear Landau
damping [10,30].
Consider a spherically symmetric—in both positions and

velocities—initial phase space particle distribution. We will
work in the thermodynamic limit N → ∞, m → 0, while
mN ¼ M, where N is the total number of particles,m is the
mass of each particle, and M is the total mass of the
gravitational system. At t ¼ 0, the particles are distributed
in accordance with the initial distribution f0ðr; pÞ inside an
infinite 3D configuration space. We would like to predict
the distribution function for the system when it relaxes to a
QSS. It is easy to see that in the thermodynamic limit, the
positional correlations between the particles vanish and all
the dynamics is controlled by the mean-field potential [23].
Furthermore, if the initial distribution is such that the VC is
satisfied, the mean-field potential should vary adiabatically,
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and the energy of each particle should change little. Since
the mean-field potential is a nonlinear function of position,
the particles on the energy shell [E, E þ dE] with slightly
distinct one-particle energies E will have incommensurate
orbital frequencies. This means that after a transient period,
the phase mixing will result in a uniform particle distri-
bution over the energy shell. The particle distribution in
the final QSS can then be obtained by a coarse graining of
the initial distribution over the phase space available to the
particle dynamics, taking into account the conservation of
the angular momentum of each particle, given the spherical
symmetry of the mean-field potential.
Consider an arbitrary initial particle distribution f0ðr; pÞ

that satisfies the VC. For t > 0, the particles will evolve
under the action of an external adiabatically varying
potential φðr; tÞ, which will eventually converge to some
ψðrÞ. Our approach will be to construct a coarse-grained
distribution for particles evolving directly under the action
of the static potential ψðrÞ, which will then be calculated
self-consistently [31–33]. Clearly, such an approximation
will only work if the variation of φðr; tÞ is adiabatic and no
resonances are excited. This is precisely the case for the
initial distributions which are isotropic in velocity and
satisfy the VC [29].
Since ψðrÞ is static and spherically symmetric, the

energy and the angular momentum of each particle will
be preserved. The nonlinearity of ψðrÞ will lead to phase
mixing of particle trajectories with the same energy and
angular momentum. The number of particles with energy
between [E, E þ dE] and the square of the angular
momentum between [l2, l2 þ dl2] is nðE;l2ÞdEdl2

and is conserved throughout dynamics. In the QSS, these
particles will spread over the phase space volume
gðE;l2ÞdEdl2, so that the coarse-grained distribution
function for the QSS will be

fðE;l2Þ ¼ nðE;l2Þ
gðE;l2Þ : ð1Þ

The self-consistent potential ψðrÞ must satisfy the Poisson
equation,

1

r2
d
dr

�
r2

dψ
dr

�
¼ 4πGmρðrÞ; ð2Þ

where

ρðrÞ ¼
Z

d3pf½Eðr;pÞ;l2ðr;pÞ� ð3Þ

is the asymptotic particle density. This gives us a closed set
of equations which can be used to calculate the distribution
function in the QSS. To simplify the notation, we will scale
all the distances to an arbitrary length scale L0, time to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3
0=GM

q
, the potential to GM=L0, and the energy

to GM2=L0.
Because of the conservation of the angular momentum of

each particle, it is convenient to work with the canonical
positions (r, θ, ϕ) and conjugate momenta (pr, pθ, pϕ).
Note that in terms of these variables, the invariant phase
space measure is d3xd3p ¼ drdθdϕdprdpθdpϕ. The
particle energy and square modulus of the angular momen-
tum are

ϵðr; θ; pr; pθ; pϕÞ ¼
1

2

�
p2
r þ

p2
θ

r2
þ p2

ϕ

r2sin2θ

�
þ ψðrÞ; ð4Þ

l2ðθ; pθ; pϕÞ ¼ p2
θ þ

p2
ϕ

sin2θ
; ð5Þ

respectively. The density of states gðE;l2Þ is

gðE;l2Þ ¼
Z

dprdpθdpϕ

Z
drdθdϕδ½l2 − l2ðθ; pθ; pϕÞ�

× δ½E − ϵðr; θ; pr; pθ; pϕÞ�; ð6Þ

and the particle phase space density nðE;l2Þ is

nðE;l2Þ¼
Z

dprdpθdpϕ

Z
drdθdϕδ½l2−l2ðθ;pθ;pϕÞ�

×δ½E−ϵðr;θ;pr;pθ;pϕÞ�

×f0

 
r;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
rþ

p2
θ

r2
þ p2

ϕ

r2sin2θ

s !
: ð7Þ

Integration over all the variables in Eqs. (6) and (7), other
than dr, can be performed with the help of a Dirac delta
function identity

δ½fðxÞ� ¼
P

iδðx − xiÞ
jf0ðxiÞj

; ð8Þ

where xi is the ith root of fðxÞ. Carrying out the integration,
we obtain the coarse-grained distribution function for the
QSS,

fðE;l2Þ ¼

R
drf0½r;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − ψðrÞp Þ� Θ½E−

l2

2r2
−ψðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E− l2

2r2
−ψðrÞ

q
R
dr

Θ½E− l2

2r2
−ψðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E− l2

2r2
−ψðrÞ

q ; ð9Þ

where Θ is the Heaviside step function. The coarse-grained
distribution function depends on position and momentum
only through the conserved quantities E and l2; therefore,
it is automatically a stationary solution of the Vlasov
equation.
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The Poisson equation can be rewritten as

r2
d2ψ
dr2

þ 2r
dψ
dr

¼ NðrÞ; ð10Þ

where NðrÞ ¼ 4πr2ρðrÞ, or

NðrÞ ¼
Z

dprdpθdpϕ

Z
dθdϕfðE;l2Þ: ð11Þ

Multiplying Eq. (11) by the identity

Z
dðl2Þδ

�
l2 − p2

θ −
p2
ϕ

sin2θ

�
¼ 1; ð12Þ

and changing the order of integration, we can write

NðrÞ¼
Z

dðl2Þdprdpθdpϕ

Z
dθdϕδ

�
l2−p2

θ−
p2
ϕ

sin2θ

�

×f

�
p2
r

2
þ p2

θ

2r2
þ p2

ϕ

2r2sin2θ
þψðrÞ;p2

θþ
p2
ϕ

sin2θ

�
: ð13Þ

The integration over the variables pθ, pϕ, θ, and ϕ can now
be performed explicitly with the help of Eq. (8). Finally,
changing the integration variable from pr to E, Eq. (13)
simplifies to

NðrÞ¼8π2
Z

∞

0

dðl2Þ
Z

∞

E0

dEfðE;l2Þ Θ½E− l2

2r2−ψðrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(E− l2

2r2−ψðrÞ)
q ;

ð14Þ

where the lower limit of integration is E0 ¼ ðl2=2r2Þ þ
ψðrÞ and fðE;l2Þ is given by Eq. (9). Substituting Eq. (14)
into Eq. (10), we find an integrodifferential equation for the
gravitational potential ψðrÞ in the QSS. Equation (10) can
be solved numerically using the Picard iteration. Once the
gravitational potential is known, the coarse-grained distri-
bution function can be easily calculated by performing the
integration in Eq. (9).
We next validated the proposed theory by comparing

the marginal position and velocity distribution functions
NðrÞ and NðpÞ to explicit molecular dynamics (MD)
simulations of a 3D self-gravitating system of N particles.
The simulations were performed using a version of the
particle-in-cell (PIC) algorithm, in which each particle
interacts with a mean-field potential produced by all other
particles [10]. In the absence of ROI, these simulations
produce identical particle distributions in QSS as calculated
using traditional binary interaction methods but are 3 orders
of magnitude faster. This allows us to easily reach the QSS
[34]. The density distribution NðrÞ is given by Eq. (14). To
obtain the momentum distribution, we first calculate the
distribution

NðprÞ ¼
Z

drdpθdpϕ

Z
dθdϕfðE;l2Þ; ð15Þ

where E ¼ p2
r=2þ ðl2=2r2Þ þ ψðrÞ and l2 ¼ p2

θþ
ðp2

ϕ=sin
2θÞ. The change of variable from pr to the modulus

of momentum p can be performed with the help of Eq. (12)
and the identity

Z
dp2δ

�
p2 − p2

r −
l2

r2

�
¼ 1; ð16Þ

yielding

NðpÞ ¼ 8π2p
Z

∞

0

dðl2Þ
Z

∞

0

drfðE;l2ÞΘ½p
2 − l2

r2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − l2

r2

q ; ð17Þ

where E ¼ p2=2þ ψðrÞ.
We first consider a water-bag initial distribution,

f0ðr; pÞ ¼ ηΘðr2m − r2ÞΘðp2
m − p2Þ; ð18Þ

where η ¼ 9=ð16π2r3mp3
mÞ is the normalization constant.

We will measure all the lengths in units of rm, which is
equivalent to setting rm ¼ 1. The VC requires that
2K ¼ −U, where

K ¼ 1

2

Z
d3rd3pf0ðr; pÞp2 ð19Þ

is the kinetic energy and

U ¼ 1

2

Z
d3rd3pf0ðr; pÞψ0ðrÞ ð20Þ

is the potential energy of the system. The potential ψ0ðrÞ
for the initial water-bag distribution is

ψ0ðrÞ ¼
(

r2−3
2

if r < 1

− 1
r if r ≥ 1:

ð21Þ

Using Eqs. (18) and (21) to calculate K and U, the VC
reduces to pm ¼ 1. In Fig. 1, we plot the joint distribution
function fðE;l2Þ for the QSS.
The marginal distribution functions can be calculated

using Eqs. (14) and (17) together with Eq. (9). Figure 2
shows the position and velocity distributions NðrÞ and
NðpÞ predicted by the integrable model. The symbols are
the results of MD simulations. An excellent agreement
between the theory and the simulations can be seen.
One particularly nice feature of the present theory is that

it can be easily used to predict the final QSS for any initial
distribution as long as it satisfies the VC. We next study a
parabolic initial distribution given by
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f0ðr; pÞ ¼ ηð1 − r2ÞΘð1 − r2ÞΘðp2
m − p2Þ; ð22Þ

with η ¼ 45=ð32π2p3
mÞ. The VC for this distribution is

pm ¼ 5=
ffiffiffiffiffi
21

p
. The marginal distributions predicted by the

theory are compared with simulations in Fig. 3. Once again,
the agreement is very good. For strongly inhomogeneous
initial distributions, the VC is not enough to completely
prevent the temporal dynamics of the mean-field potential.
That is, even if we restrict one moment of the distribution
function, other moments might still have sufficiently strong
dynamics to excite parametric resonances. Indeed, we find
that for very strongly inhomogeneous initial distributions,
there is some discrepancy between the theory and the
simulations. Nevertheless, even in these extreme cases, the
theory remains quite accurate [34].
We have presented a theory that is able to predict the

particle distribution in the final QSS to which a 3D self-
gravitating system will relax from an initial condition. The
theory can be used for initial distributions which are
isotropic in particle velocity and satisfy the VC. It is
interesting to compare and contrast our approach with the
theory of violent relaxation developed by Lynden-Bell
(LB). The statistical mechanics of LB is based on the

assumption of ergodicity and perfect mixing of the density
levels of the initial distribution function over the phase
space [36]. This is contrary to the approach presented
in this Letter, which shows that dynamics of 3D self-
gravitating systems with initial distribution satisfying the
virial condition is closer to integrable than ergodic.
Curiously for various systems, in which the particles

are either self-bound—like 1D and 2D gravity—or are
bounded by an external potential or by the topology—such
as magnetically confined plasmas or spin systems—the LB
approach was found to work best for the initial water-bag
distributions that satisfied the VC [10,20]. For distributions
away from the VC, QSS were found to have a characteristic
core-halo structure very different from the predictions of
LB theory [17–19,37,38]. It was recently observed, how-
ever, that for more complex inhomogeneous or multilevel
distributions, LB theory failed even when the initial
distribution function satisfied the VC [29,39]. The failure
of LB theory can now be attributed to the almost complete
absence of ergodicity and mixing when the initial distri-
bution satisfies the VC. The evolution of the mean-field
potential of such systems is almost adiabatic, and the
dynamics is closer to integrable than to ergodic [29]. The
relaxation to QSS is the result of phase mixing of particles
on the same energy shells and not a consequence of

FIG. 2 (color online). Theoretically predicted density (left)
and momentum (right) distributions (solid lines) for the QSS for
the initial water-bag distribution. The symbols (black dots) are the
results of MD simulations. The initial t ¼ 0 density and mo-
mentum distributions are plotted with dashed lines—an initial
water-bag distribution is given by Eq. (18).

FIG. 3 (color online). Solid lines are the theoretically predicted
density (left) and momentum (right) distributions for the QSS for
initial distribution (dashed lines) given by Eq. (22). The symbols
(black dots) are the results of MD simulations.FIG. 1 (color online). Distribution function in energy and

angular momentum for the QSS for an initial water-bag distri-
bution, Eq. (18), satisfying the VC.

FIG. 4 (color online). Comparison between the density, left
panel, and momentum, right panel, distributions calculated using
LB statistics and the present theory. Initial distribution is the
water-bag in momentum and position, Eq. (18), satisfying the
VC. Solid curves are the results of the present theory, dashed
curves are the predictions of the LB theory, and the solid circles
are the results of MD simulations.
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ergodicity over the full energy surface. Indeed, for 3D
gravitational systems, LB theory fails to accurately account
for either velocity or density distributions, as can be seen
in Fig. 4, even for the initial virial water-bag distribution,
Eq. (18). Furthermore, LB theory is very difficult to extend
to more complicated initial conditions than a one-level
water-bag distribution, while the present approach can, in
principle, be used for any arbitrary distribution as long as it
satisfies the VC. The goal of the future work will be to
extend the theory presented in this Letter to initial dis-
tributions which do not satisfy the VC. Parametric reso-
nances and particle evaporation, however, make this a very
difficult task.
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