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Normal diffusion in corrugated potentials with spatially uncorrelated Gaussian energy disorder famously
explains the origin of non-Arrhenius exp½−σ2=ðkBT2Þ� temperature dependence in disordered systems.
Here we show that unbiased diffusion remains asymptotically normal also in the presence of spatial
correlations decaying to zero. However, because of a temporal lack of self-averaging, transient subdiffusion
emerges on the mesoscale, and it can readily reach macroscale even for moderately strong disorder
fluctuations of σ ∼ 4 − 5kBT. Because of its nonergodic origin, such subdiffusion exhibits a large scatter in
single-trajectory averages. However, at odds with intuition, it occurs essentially faster than one expects
from the normal diffusion in the absence of correlations. We apply these results to diffusion of regulatory
proteins on DNA molecules and predict that such diffusion should be anomalous, but much faster than
earlier expected on a typical length of genes for a realistic energy disorder of several room kBT, or merely
0.05–0.075 eV.
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Diffusion and transport processes in disordered amor-
phous materials, including various polymer glasses and
biopolymers such as DNAs and proteins have been in the
research spotlight already for over fifty years [1–3]. A
paradigm in this field is provided by hopping transport
modeled by continuous time random walks (CTRW) with
energy disorder on the sites of localization and their
continuous space analogy—diffusion of overdamped par-
ticles in random potentials (static or quenched disorder).
Exponential energy disorder on sites can easily yield
anomalous diffusion when the dispersion of energy fluc-
tuations σ exceeds thermal energy kBT. It gave rise to the
famous CTRW model of anomalous transport by Montroll,
Scher, Weiss, Shlessinger, and others [3,4] featured by
heavy-tailed residence time distributions on sites ψðτÞ ∼
τ−1−α possessing no mean value, with α ∼ kBT=σ within a
mean-field approximation. This model became very popu-
lar in recent years in the context of weak ergodicity
breaking [5,6] and aging [6], where the ensemble and
trajectory averages do not coincide and can behave
very differently. Such a behavior was indeed found exper-
imentally [7].
However, exponential disorder needs to be modified [8]

to describe a typical non-Arrhenius, Vogel-Fulcher depend-
ence of transport coefficients such as (sub)diffusion coef-
ficient DðTÞ ∝ exp½−σ=kBðT − T0Þ�, for T > T0, on
temperature T. Moreover, the temperature dependences
of diffusion and mobility in glasslike materials are often
described as DðTÞ ∝ exp½−σ2=ðkBTÞ2� [2,9–12]. This
dependence is not easy to distinguish experimentally from

the Vogel-Fulcher law [13]. Concurrently, the model of
Gaussian disorder, rather than exponential energy disorder,
has been justified for a number of materials [12]. Gaussian
disorder emerges naturally by virtue of the central limit
theorem, e.g., in molecularly doped polymers with dipolar
disorder [14]. Furthermore, genetic material was already
foreseen as an aperiodic disordered crystal by Schrödinger
in his famous book [15]. Indeed, interaction of transcription
factors and signaling proteins with DNA macromolecules
—a problem central to gene expression in molecular
biology—is also well described by the Gaussian energy
disorder [16,17]. If Gaussian disorder is spatially uncorre-
lated, no anomalous diffusion and transport regime is
possible. This is because any Gaussian energy disorder
yields in the mean-field approximation local residence time
distributions with all the moments being finite.
Accordingly, the classical result by de Gennes, Zwanzig,
and Bässler yields the renormalization (suppression) of
normal transport coefficients by the factor exp½−σ2=
ðkBTÞ2�. This famously explains the origin of this non-
Arrhenius temperature dependence [2,9–11]. However, in
dipolar organic glasses the long-range correlations in site
energy fluctuations emerge [14]. Short-range correlations
also naturally emerge for diffusion of proteins on DNAs.
Indeed, let us consider the contact area of DNA and a
bound protein. It involves typically from 5 to 30 base pairs
(bp) in length [18]. The interaction energy is a pairwise sum
of the energy of interaction of a base in contact and protein.
It is approximately Gaussian distributed [16]. When the
protein slides by one base along DNA, it remains in contact
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with all the same bases except one new and one past. This
fact most obviously introduces spatial correlations in the
random binding energy profile on a typical length of
DNA-protein contact, even if pairwise correlations are
totally absent. Obviously, any correlations in the bp
sequence or inclusion of long-range electrostatic inter-
actions [19] can only enhance spatial range of such
correlations. This provokes the question, How do the
binding energy correlations affect diffusion along DNA?
Will it still be normal, or maybe anomalous diffusion
regime emerges? Notice that this problem is very different
from the problem of Sinai-type or random force diffusion,
which leads to the growing with distance correlations in the
energy fluctuations [1] described, e.g., by fractional
Brownian motion [20]. In this respect, decaying in space
energy correlations renders the corresponding force corre-
lations profoundly negative with the total integral of the
quenched force autocorrelation function be always zero.
Below we show that decay of energy correlations

guarantees self-averaged ergodic character of unbiased
diffusion on very large distances. Diffusion is asymptoti-
cally normal, and the renormalized diffusion coefficient is
described by the same well-known result of Ref. [10].
However, some older [21] and very recent [22,23] simu-
lations do reveal anomalous diffusion and transport. Is
something wrong with these simulations? No. We confirm
them in some basic features. Anomalous diffusion emerges
indeed. Moreover, the ensemble and trajectory averages
become transiently very different. However, contrary to the
earlier arguments [22], this subdiffusion is not based on a
residence time distribution with divergent moments.
Averaged exit times from any finite spatial domain and
their variance are not only finite, but they become much
smaller than in the absence of correlations. Transient
subdiffusion indeed makes mesoscopic transport processes
faster overall, not slower, as generally believed [24].
Subdiffusion can last very long because on the correspond-
ing mesoscale no self-averaging is attainable. However, on
very large distances, it smoothly changes into the normal
diffusion. This provokes the question, How large is very
large? What determines the corresponding mesoscale?
When the classical result is indeed physically relevant,
and when it becomes of lesser utility, or can even mislead?
These are the major questions we answer with this work.
Model.—We consider a standard model of overdamped

diffusion in a spatially disordered potential VðxÞ [2,9,10]. It
is described by the Langevin equation

η_x ¼ −
∂UðxÞ
∂x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTη

p
ζðtÞ; ð1Þ

at temperature T. Here, η is frictional coefficient and ζðtÞ is
unbiased white Gaussian noise, hζðtÞζðt0Þi ¼ δðt − t0Þ. The
potential energy, UðxÞ ¼ UregðxÞ þ VðxÞ, consists gener-
ally of two parts, a regular UregðxÞ, e.g., UregðxÞ ¼ −f0x

for a constant force f0, and a random part VðxÞ. It obeys
unbiased Gaussian distribution, hVðxÞi ¼ 0, with variance
σ2 and normalized correlation function gðzÞ,

hVðxÞVðx0Þi ¼ σ2gðjx − x0jÞ; ð2Þ

gð0Þ ¼ 1 ≥ gðzÞ, being a wide sense stationary random
process in space. In application to diffusion on DNA,
regular potential also includes a mean binding energy
V0 ∼ 10–20kBTroom, and σ ≪ jV0j. V0 is crucial for the
protein binding and dissociation, but it does not influence
sliding along DNA. The simplest model is provided
by exponentially decaying short-range correlations,
gðzÞ ¼ expð−jzj=λÞ, with correlation length λ, which is
about the linear size of the protein-DNA contact. In
numerical simulations, this model was effectively regular-
ized to make the mean-square fluctuation of random force
fðxÞ ¼ −ð∂VðxÞ=∂xÞ finite [25].
Theory and results.—Normal transport coefficients

renormalized by disorder can be found by a standard trick
with periodization of random potential [1], imposing an
artificial spatial period L, and considering the limit L → ∞
at the end of calculation. Following Refs. [10,28], one
obtains (at finite L)

Dren ¼
D0

Cþ
L C−

L

ð3Þ

for the renormalized diffusion coefficient in the unbiased
case (f0 → 0) [25]. Here,

C�
L ¼ 1

L

Z
L

0

e�βVðxÞdx ð4Þ

is a spatially averaged random function w�ðxÞ≔e�βVðxÞ.
Furthermore, D0 ¼ kBT=η is the free diffusion coefficient
and β ¼ 1=ðkBTÞ is the inverse temperature. The earlier
result [10,28] readily follows upon identifying the spatial
average in Eq. (4) with the ensemble average hC�

L i ¼
he�βVðxÞi over random realizations of VðxÞ. Since for any
zero-mean Gaussian variable ξ, hexpðξÞi ¼ expðhξ2i=2Þ,
for arbitrary Gaussian disorder, we obtain

Dren ¼ D0e−σ
2=ðkBTÞ2 : ð5Þ

Remarkably, this is precisely the same result obtained
earlier for noncorrelated potentials [10]. Correlations have
no influence on it. This is a very important conclusion, and
numerics completely confirm it in Fig. 1, for the particular
model considered.
This brings us to our crucial point. Namely, we wish to

reexamine the ergodic assumption leading to Eq. (5). When
does it work in the strict limit L → ∞? Even more
important, for which finite L does it become well justified?
This will give us a characteristic mesoscopic scale of
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transiently anomalous diffusion. For L smaller than a
typical ergodicity length Lerg, we expect anomalous dif-
fusion, which becomes asymptotically normal for L≫Lerg.
To establish the corresponding criterion, one has to

consider statistical variations of C�
L . Remarkably, a similar

problem also emerges for the model of exponential energy
disorder studied in Ref. [5], where fluctuations do not
vanish even in the strict limit L → ∞. Following a standard
procedure [29], we consider the (relative) ensemble vari-

ance, ½hðC�
L Þ2i − hC�

L i2�=hC�
L i2, of the trajectory average

C�
L , which is called the ergodicity breaking parameter

(EBP) [6,30]. It must vanish for any ergodic process in the
limit L → ∞. Then, one can use hC�

L i instead of C�
L . A

sufficient condition for this is that the ensemble-averaged
autocorrelation function K�ðxÞ ¼ hδw�ðx0Þδw�ðx0 þ xÞi
of the random process δw�ðxÞ≔e�βVðxÞ − he�βVðxÞi van-
ishes in the limit x → ∞ [29]. After some straightforward
algebra, we obtain

K�ðxÞ ¼ eβ
2σ2fexp½β2σ2gðxÞ� − 1g: ð6Þ

From this important result, it follows immediately that
diffusion is indeed asymptotically ergodic and normal for
any random Gaussian potential with vanishing correlations,
limx→∞gðxÞ ¼ 0. Then, the result in Eq. (5) is valid.

We focus on short-ranged correlations, which seemingly
justified the use of the approximation of uncorrelated
disorder in the bulk of previous research work [2,9,10].
Even here, with growing σ, diffusion becomes transiently
anomalous, hδx2ðtÞi ∝ tαðtÞ, with a time-dependent
0 < αðtÞ ≤ 1. It starts from α ¼ 1 at t ¼ 0 and tends to
α ¼ 1 asymptotically; see inset in Fig. 1. The time duration
and spatial extension of subdiffusion depend very strongly
on σ. For example, for σ ¼ 4 in Fig. 1, there is no signature
of growing αðtÞ on the whole time scale of simulation.
Indeed, α ≈ 0.4 for 103 < t < 105. The emergence of this
subdiffusion is due to a transient breaking of ergodicity.
Importantly, it is also non-Gaussian in the subdiffusive
regime; see Fig. S2 in the Supplemental Material [25].
There exists an ergodicity length LergðσÞ, such that
self-averaging occurs only for L ≫ LergðσÞ. However, no
self-averaging occurs on the mesoscale defined by the
requirement that the above EBP equals one, which leads
to the condition

Z
1

0

ð1 − yÞeβ2σ2gðLyÞdy ¼ 1: ð7Þ

The solution of this equation for unknown L gives Lerg.
Another estimation yields LergðσÞ ∼ λeσ

2=ðkBTÞ2 [17], which
indeed displays a major trend with σ. For example, for
σ ¼ 2, Eq. (7) yieldsLergð2Þ ≈ 35λ (while e4 ≈ 54.6). This is
indeed consistent with the trend one observes in Fig. 1 for
σ ¼ 2, where hδx2ðtmaxÞi ∼ 3000λ2. In this respect, a recent
experiment shows that 1d diffusion along DNA is sup-
pressed by a factor of 100with respect to one in the bulk [31].
This suggests σ ∼ 2kBTroom ∼ 0.05 eV, with experimental
values D0 ¼ 3 μm2=s and Dren ¼ 0.046 μm2=s [31].
Applying this result to diffusion of a protein on DNAwith
λ ¼ 15 bp suggests that protein diffusion should still be
anomalous on a typical gene length about 1000 bp.
Remarkably, another experiment reveals even a larger
suppression factor of about 104 [32], which would corre-
spond to σ ∼ 3kBTroom. Then, from Eq. (7),Lergð3Þ ≈ 2070λ
(while e9 ≈ 8103), a drastic increase. Thiswouldmean that a
typical subdiffusion lengthwould cover about 30–120 genes
in the bacterial genome, which can have important conse-
quences for gene regulation. In a more general context,
already for σ ¼ 4kBT, Lergð4Þ ∼ 1.2 × 106λ, i.e., for
λ ∼ 10 Å, Lergð4Þ ∼ 1.2 mm, subdiffusion clearly reaches
a macroscale. Other models of decaying correlations cannot
change this conclusion much. Then, the classical result in
Eq. (5) can mislead, even being formally valid.
Given the nonergodic origin of such subdiffusion, it

becomes important to study single-trajectory averages,
δx2ðtÞTw≔½1=ðTw − tÞ� R Tw−t

0 ½δxðtjt0Þ�2dt0, of the mean-
squared displacement, δxðtjt0Þ ¼ xðtþ t0Þ − xðt0Þ, over a
time window Tw, assuming t ≪ Tw [7,32]. The results for
σ ¼ 2 display a typical scatter in Fig. 2. It can be
characterized by a broadly distributed subdiffusion
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FIG. 1 (color online). Ensemble-averaged diffusion for differ-
ent values of disorder strength σ in units of kBT for exponentially
decaying correlations. In doing numerics, we fixed σ ¼ σ0
and varied temperature. Distance is measured in units of
correlation length λ and time in units of τ0 ¼ λ2η=σ0. For
σ0 ¼ 2kBTroom ¼ 0.05 eV, D0 ¼ kBTroom=η ¼ 3 μm2=s, and
λ ¼ 5.25 nm (15 bp), τ0 ≈ 4.6 μs. Initially, diffusion is normal,
hδx2ðtÞi ¼ 2D0t. The dashed lines present asymptotically normal
behavior hδx2ðtÞi ¼ 2Drent, for σ=ðkBTÞ ¼ 1=2; 1; 3=2; 2. Tran-
sient subdiffusion is much faster than this limit. Averaging over
104 particles is done in 10 different realizations of random
potential replicated with period L ¼ 104 (103 particles per a
potential realization). Particles are initially uniformly distributed
over the length L.
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exponent α. Similar features are indeed seen in many
experiments [7]. The corresponding ensemble average

hδx2ðtÞTwi is different from the standard ensemble average
hδx2ðtÞi, even having a different anomalous exponent; see
Figs. 2(a) and 2(b). Recent experimental findings [32]
indirectly corroborate our results. Indeed, in Ref. [32] a
huge scatter of the diffusional constants for LacI protein on
a bacterial DNA has been reported, which the authors
attributed to a wildly (over 3 orders of magnitude)
distributed normal diffusion coefficient. When we increase
σ to σ ¼ 3kBT, the scatter indeed further increases; see in
Fig. S3 of the Supplemental Material [25].
Strikingly enough, all the single-trajectory averages

reveal subdiffusion, which proceeds much faster than
expected from Eq. (5); see Fig. 2(a). It must be emphasized
that even though our results are somewhat reminiscent of
those obtained for CTRW subdiffusion with divergent
mean residence times, or with exponential energy disorder
[6], in fact, they are very different. First, single trajectory
averages also yield subdiffusion (without any boundary
effects). Second, the drift of these averages with growing
time window Tw is much less pronounced; see Fig. 2(c).
Moreover, the related EBP shows a clear tendency to zero
with increasing Tw, cf. inset in Fig. 2(a).

It is especially important that the corresponding resi-
dence time distribution to stay in any finite-size spatial
domain is neither featured by diverging mean residence
time nor by diverging variance. In this respect, our results
also essentially differ from the results in Ref. [22]. They are
somewhat closer in this particular aspect to viscoelastic
subdiffusion. However, the latter is mostly ergodic by its
origin [33], and therefore is also different. We investigate
the distribution of escape times out of spatial domain
½−λ; λ� for the particles initially localized in the middle
of it. For disorder-renormalized normal diffusion, the
residence time distribution can be derived as ψðtÞ ¼
π
P∞

n¼0ð−1Þnð2nþ 1Þe−π2ð2nþ1Þ2t=4, with time in units of
λ2=Dren. It is dominated by a single-exponential ψðtÞ ∝
π expð−π2t=4Þ at large times. For small disorder, this result
is nicely confirmed numerically in Fig. 3(a) which also
provides one of the successful tests of the accuracy of our
numerics. However, already for σ ¼ kBT, deviations are
observed in Fig. 3(b). The mean time not only exists, but it
is much smaller that one expects from normal diffusion,
even though the distribution becomes broader than expo-
nential. For a sufficiently large disorder, its essential part is
nicely described by the log-normal distribution ψðtÞ ¼
1=ð ffiffiffiffiffiffi

2π
p

στtÞ exp½−ln2ðt=τ0Þ=ð2σ2τÞ�, with two parameters
τ0 and στ, which are related to the finite mean and variance
of this distribution depicted in Fig. 3(d). Such a distribution
can be confused for a power-law distribution, ψðtÞ ∝ 1=t, at
short times. However, it is profoundly different. The
numerical mean and variance are much smaller than those
expected from disorder-renormalized normal diffusion.
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FIG. 2 (color online). (a) Single-trajectory averages are scat-
tered between the free and disorder-renormalized diffusion limits
(depicted with dash-dotted lines). Time window Tw ¼ 2 × 104

for averaging is chosen 100 times larger than the maximal time t.
Each trajectory is characterized by individual subdiffusion index
α distributed as shown in the lower inset. Arrow indicates the
value of α ¼ 0.67 which corresponds to the ensemble average
depicted with dashed line. The ensemble average of time averages
with α ¼ 0.78 is depicted as full green line. It is also depicted
in (b) as function of time t for Tw ¼ 104, and also in (c) as a
function of Tw for two fixed values of t. The latter decays as
hδx2ðtÞi ∼ Tw

−0.07. Moreover, the corresponding ergodicity
breaking parameter in the upper inset of (a) gradually decays
as a function of Tw. This indicates that no ergodicity breaking
takes place asymptotically, Tw → ∞.
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Moreover, they exhibit a linear dependence on σ=ðkBTÞ in
the exponential, i.e., ∝ exp½σ=ðkBTÞ�, rather than quadratic,
i.e., ∝ exp½σ2=ðkBTÞ2�. Figure 3(d) illustrates this very
important finding. A subdiffusional search due to spatial
correlations is thus expected to proceed much faster than
one naively expects from the well-known renormalization
by disorder.
To conclude, we summarize the important findings of

this work. First, the famous result in Eq. (5) remains valid
asymptotically for any model of decaying correlations.
Diffusion is suppressed by the factor responsible for the
well-known non-Arrhenius temperature dependence [13].
However, a similar factor also characterizes the spatial
range of transient subdiffusion in units of the disorder
correlation length λ. Second, subdiffusion readily reaches
a macroscale even for a moderately strong disorder of
σ ∼ 4–5kBT. Third, already for σ ∼ 2kBTroom ∼ 0.05 eV,
diffusion of regulatory proteins on DNAs becomes essen-
tially anomalous on a typical length of genes, with a large
scatter in single-trajectory averages. Fourth, and the most
surprising, such subdiffusion proceeds much faster than
one expects when Eq. (5) is applied to transport processes
on the mesoscale. We believe that these important findings
provide a new vista on the role of correlations in Gaussian
disorder and subdiffusion, and will inspire related exper-
imental work.
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