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We derive a general framework that lifts any set of bipartite to multipartite entanglement witnesses and
we show how positive maps can naturally be incorporated into this framework. We show that some previous
approaches for multipartite entanglement detection are intimately connected to the witnesses derived from
partial transposition and that such criteria can easily be outperformed in higher dimensions by
nondecomposable maps. As an exemplary case we present a witness that is capable of detecting genuine
multipartite entanglement in bound entangled states.
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Entanglement is a striking feature of quantum physics
that lies at the very heart of many of its numerous
applications [1]. Characterizing entanglement is a chal-
lenging task whose complexity scales very unfavorably
with the size of the system [2–4]. In bipartite systems, a
major breakthrough in entanglement detection came with
the advent of simple operational criteria for detecting
entanglement in mixed states [5]. One of the first of its
kind was the famous Peres-Horodecki criterion, also known
as positivity under partial transposition (PPT) criterion. It
provides a method to tell with certainty, whether two qubit
systems are entangled and also provides a criterion showing
whether states cannot be distilled from multiple copies of
such states into purer entanglement via local operations and
classical communication (LOCC) [6]. Soon after, it was
realized that one can exploit the theory of positive, yet not
completely positive maps to obtain complementary and
in many cases much stronger entanglement detection
criteria [7]. In fact, if a state that remains positive after
the application of all possible positive maps to one of its
subsystems it is separable with respect to that partition [5].
When it comes to multipartite systems, the situation

becomes a little more involved. The possible structure
behind the infinitely many decompositions of multipartite
quantum states constitutes an even harder challenge for the
detection of entanglement. Famous instances exemplifying
the complexity of the task are states that are entangled
across every bipartite cut, yet no multipartite entanglement
is necessary to describe them [2] and on the other end of the
spectrum are states that are separable with respect to every
bipartite cut, yet they are not completely separable [8].
Unfortunately, the paradigmatic tool for entanglement
detection in bipartite systems, positive maps, is an inher-
ently bipartite concept and applied to multipartite systems
it can never reveal more than mere entanglement across
bipartite cuts.

Thus, entanglement witnesses are the most commonly
used tool to detect genuine multipartite entanglement in
noisy multipartite quantum systems [3] and many attempts
have been made to frame multipartite entanglement detec-
tion in a general framework [9–15]. In the bipartite case
there is an intriguing connection between positive maps
and entanglement witnesses, as the latter can be derived
from the former. In this Letter, we introduce a general
framework that allows us to construct witnesses for
genuine multipartite entanglement directly incorporating
positive maps. In fact, we even show how any nonpartial
decomposability can be revealed in such a way and provide
examples where our framework outperforms the best
known witness constructions.
To get started let us precisely define the underlying

concepts of separability, positive maps, and entanglement
witnesses before we move on to our main theorem.
A state is considered to be partially separable

with respect to bipartitions b ∈ B if and only if it can be
written as

ρB ¼
X
b∈B

pb

�X
i

qibðjϕiihϕijÞb ⊗ ðjϕi
0ihϕi

0jÞb̄
�
: ð1Þ

This definition carries the operational meaning of which
resources in terms of separability are required to create
this state via LOCC. A special case are states that are
biseparable; i.e., B is the set of all possible bipartitions
jBj ¼ 2n−1 − 1. The complement of the set of biseparable
states is usually referred to as genuinely multipartite
entangled states as their creation via LOCC requires pure
states that are not separable with respect to any partition.
Because of the involved structure of the definition of
biseparability (1) detecting genuine multipartite entangle-
ment is a challenging task.
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This is where entanglement witnesses prove useful.
These are self-adjoint operators that have a positive expect-
ation value for all states ρB, while there is at least one state
in the complement for which the expectation value is
smaller than zero. The advantage of witnesses, while their
detection capability is limited to a small volume of states,
is of course the generically easy experimental access
(especially in systems so large that a tomography is nearly
impossible as, e.g., in Refs. [16,17]). If global measure-
ments are available a single measurement is sufficient to
reveal entanglement in a physical system and even for more
realistic local measurements generic witnesses only require
a small fraction of possible measurements [3]. Especially
for revealing multipartite entanglement this is a very
desirable property as a full state tomography scales very
unfavorably in the number of systems involved.
Positive maps Λ (that are not completely positive), on the

other hand, constitute a tool for entanglement detection
that require access to the full density matrix and also the
computation of eigenvalues of matrices that are exponen-
tially large in the number of systems. There is, however, a
straightforward connection that allows us to construct
entanglement witnesses directly from positive maps, which
we will elucidate after some preliminary definitions. For
bipartite systems it is obvious that

ðΛb⊗1Þb̄½ρb�¼
X
i

qiΛ½ðjϕiihϕijÞb�⊗ ½ðjϕi
0ihϕi

0jÞb̄�≥0;

ð2Þ

such that any negative eigenvalue after application of the
positive map to the subsystem immediately reveals entan-
glement across this bipartition into the subsystem and its
complement. While this can never reveal partial separabil-
ity properties in the general sense of Eq. (1), positive maps,
such as those in Refs. [18–22], have proven to provide
strong tools in the bipartite case [5]. There is a straightfor-
ward framework for constructing bipartite entanglement
witnesses from positive maps: If the aim is to detect a given
entangled target state σ and there exists a positive map Λ,
such that Λ ⊗ 1½σ� has at least one negative eigenvalue
with corresponding eigenvector jni, then

WðΛÞ ¼ ðΛ� ⊗ 1Þ½jnihnj�; ð3Þ

where Λ� is the dual of the positive map Λ, constitutes an
entanglement witness that will detect the state σ to be
entangled. Such a procedure is of course very helpful in
experimental entanglement verification if one has a rea-
sonable guess what the state of the system under inves-
tigation should be. Then one can apply this procedure and
end up with an experimentally feasible witness operator
that should be able to reveal entanglement in the system.
Unfortunately this procedure only works for the bipartite
case as the application of a map on a system necessarily

implies a bipartition. Now we continue with the main result
of our Letter, where we present a framework that enables
such a construction also for partial separability and thus for
genuine multipartite entanglement. We start directly with
the main theorem.
Theorem: For any set of bipartite entanglement

witnesses Wb across bipartitions bjb̄ ∈ B, the following
expression is always positive for mixed states ρ, which
can be decomposed into pure states that are separable with
respect to any of the partitions in B:

Tr

�
ρ

�X
b∈B

τb þQ

��
≥ 0; ð4Þ

where we have used the abbreviated notation
Q ¼ N þ P, P¼P

η;η0 jηihη0jmax½0;minb∈B½ℜe½Wb��, N¼P
η;η0 jηihη0jmin½0;maxb∈B½ℜe½Wb��, and τb ¼ ½Wb −Q�þ

(with ½A�þ we denote the non-negative part of the spectrum
of A, i.e., we project onto the eigenspace spanned by
eigenvectors belonging to positive eigenvalues).
Proof: The first observation required is

Tr½ρ½A�þ� ≥ Tr½ρA�; ð5Þ

and thus

Tr½ρðτb þQÞ� ≥ Tr½ρWb�: ð6Þ

Now if we write down a state that is decomposable into
states ρb, separable with respect to bipartition in B as

ρB ¼
X
b

pbρb; ð7Þ

we find that

Tr

�
ρ

�X
b∈B

τb þQ

��

¼
X
b∈B

pbTr½ρbðτb þQÞ� þ
X

fb0≠bg∈B
pb

0Tr½ρb0 ðτbÞ� ≥ 0;

ð8Þ

which completes the proof. The idea behind the theorem is
straightforward: If one has a set of witnesses for detecting
entanglement across different partitions that have some
overlapping matrix elements collected in Q, one can
separate every witness Wb ¼ QþMb and by making sure
that Mb is positive semidefinite (as we did in our theorem
by using only the positive part of the spectrum) it
immediately follows thatWGME ¼ QþP

bMb is a witness
for genuine multipartite entanglement.
While this theorem lifts any set of bipartite witnesses to

operators with positive expectation values on partially
separable states, we need to find a negative eigenvalue
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of
P

b∈Bτb þQ in order to guarantee that the multipartite
witness is nontrivial. Here we can use the connection
between positive maps and entanglement witnesses. If
we use WbðΛbÞ as witnesses for entanglement across
bipartitions we can facilitate the search for indecomposable
witnesses. More importantly this opens the possibility for
systematically choosing suitable witness states jψbihψbj
that maximize the overlap (i.e., the norm of Q) in a natural
way. The problem can be formalized as follows.
Given a multipartite state ρ that is detected to be

entangled across every bipartition by means of positive
maps Λb, for each bipartition this implies that we will find
witnesses of the form

WbðΛbÞ ¼ ðΛ�
b ⊗ 1b̄Þ½jψbihψbj�: ð9Þ

While in the bipartite case the choice of jψbihψbj is
obviously given via the eigenvector corresponding to the
smallest (i.e., negative) eigenvalue of Λ½ρ�, this choice is
not as obvious in the multipartite case. Indeed if we
combine these observations with our main theorem we
end up with the central witness used in all subsequent
examples:

W¬BðfΛb; jψbigÞ ¼
X
b∈B

½ðΛ�
b ⊗ 1b̄Þ½jψbihψbj� −Q�þ þQ;

ð10Þ
whose eigenvalues we want to minimize.
While in general this may be a hard task to achieve

optimally, we can present some systematic approaches that
work surprisingly well.
Starting with the most famous and widely used example

of positive maps, the transposition, we illustrate the method
in the three qubit case.
Example 1: If we want to detect genuine multipartite

entanglement in a three qubit GHZ state jGHZi ¼
ð1= ffiffiffi

2
p Þðj000i þ j111iÞ, through a witness derived from

the PPT criterion, the choice of jψbi is quite straightfor-
ward. If we choose

jψ1i ¼
1ffiffiffi
2

p ðj011i − j100iÞ;

jψ2i ¼
1ffiffiffi
2

p ðj101i − j010iÞ;

jψ3i ¼
1ffiffiffi
2

p ðj110i − j001iÞ; ð11Þ

we end up with a witness operator

W¬f1j23;2j13;3j12g ¼
1

2
1 − jGHZihGHZj; ð12Þ

which is well known [3] and even necessary and sufficient
for detecting multipartite entanglement in GHZ-diagonal
states [23]. This means that for a large class of mixed states

(convex combinations of GHZ states) this simple witness
construction is indeed necessary and sufficient. Indeed,
Refs. [9–11] introduce a framework for multipartite entan-
glement detection, whose linearized version is exactly
corresponds to our main theorem here. Using this frame-
work, one can always find the corresponding jψbi for
detecting multipartite entanglement using transposition.
However, as we show, this framework (and the multipartite
entanglement witnesses derived from the PPT criterion) can
easily be outperformed by a simpler choice of maps. For
instance, Choi’s map [18] and its generalizations [20,21]
have the advantage that the negative off-diagonal elements
in ðΛ�

b ⊗ 1b̄Þ½jψbihψbj� generically correspond to the off-
diagonal elements of jψbihψbj. This facilitates the search
immensely as for the theorem to maximize detection
strength we require the off-diagonal elements of ðΛ�

b ⊗
1b̄Þ½jψbihψbj� to be as similar as possible. For such maps
where this is naturally the case it is sufficient for detecting a
target state jΨti to choose jψbi ¼ jΨti∀b (or if one is lucky
and finds an eigenvector of jψbi ¼ jΨti∀b in all partitions
with a negative sign and high modulus, then this is, of
course, the obvious choice). We will now present two
simple examples (the last being similar in spirit to one
example in Ref. [24]) where this advantage becomes
immediately evident.
Example 2: In a similar fashion, one can construct

witnesses for exemplary states that are extremal in terms
of local ranks. While the GHZ is a prime example of having
all local ranks equal to 2, we can also directly apply our
method to higher dimensional generalizations that involve
an arbitrary distribution of local ranks using the construc-
tion given in Ref. [25]. For example, for the class (4,4,3),
i.e., system one and two of rank four and the third system
only of rank three, we can directly write down an example
as jψ ð4;4;3Þi ¼ 1

2
ðj001i þ j112i þ j223i þ j333iÞ. Now we

can use the dual of Choi’s map

½ðaijÞ� ↦
1

2

0
B@

a11 þ a33 −a12 −a13
−a21 a22 þ a11 −a23
−a31 −a32 a33 þ a22

1
CA; ð13Þ

with jψbi ¼ jψ ð4;4;3Þi for all partitions. Even with this
rather simple choice one can detect this state to be
genuinely multipartite entangled without any need for
optimizing over jψbi.
Example 3: Adopting the following short hand notation

for GHZ-like states:

jα; x; y; λαi ¼
Y
i∈α

σi ⊗ 1ī
� ffiffiffiffiffi

λα
p

jxi⊗n þ
ffiffiffiffiffiffiffi
λ−1α

q
jyi⊗n

�
;

ð14Þ
with σ ¼ jxihyj þ jyihxj. And the corresponding projector
we denote as Pαðx; y; λαÞ, such that we can introduce the
operator
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EðfλαgÞ ¼ 3jGHZ3ihGHZ3j þ
X

i¼1;2;3

X
x<y

X
y¼1;2

Piðx; y; λiÞ;

ð15Þ

where jGHZ3i ¼ 1ffiffi
3

p ðj000i þ j111i þ j222iÞ and with this,
finally, the density operator

ρðfλαgÞ ¼
EðfλαgÞ

Tr½EðfλαgÞ�
: ð16Þ

It is immediately evident that this density matrix is invariant
under partial transposition (since the off-diagonal elements
of jGHZ3i after partial transposition in system b are
the same as jb; x; y; λbi), so the PPT criterion is not even
able to reveal bipartite entanglement in this system.
However, using Choi’s map for d ¼ 3 one can easily
check that this state is indeed PPT entangled (i.e., definitely
bound entangled) across every bipartition for values of
0 < λα < 1. An immediate implication is the fact that if the
state is multipartite entangled it cannot be detected by our
theorem using the PPT and also not from the techniques
developed in Refs. [9–11,13–15,23]. Using the very simple
and straightforward choice jψ1i ¼ jψ2i ¼ jψ3i ¼ jGHZ3i,
λα ¼ λ∀α, and again Choi’s map we can directly apply our
method to check partial separability properties. We find that
the witness is violated for all values of λ between 0 and 1

3
and thus this bound entangled state is indeed genuinely
multipartite entangled. Other examples were found for
symmetric states in Refs. [26–29]) and in Ref. [30] the
authors construct a different framework that allows for the
construction of PPT-GME states; however, to our knowl-
edge that is the first explicit example in a 3 ⊗ 3 ⊗ 3 system
and thus the smallest example of a PPT-GME state so far.
The violation of this witness is even so significant that
it exhibits a notable noise robustness with respect to
white noise.
If we mix the state, e.g., for a choice of λ ¼ 1

9
, with the

maximally mixed state, i.e.,

ρnoiseðpÞ ¼ p
1
27

þ ð1 − pÞρ
�
1

9

�
; ð17Þ

we find that the white noise resistance, i.e., the critical value
of white noise admixture p, until which genuine multipar-
tite entanglement can still be detected is pcrit ¼ 9

179
≈ 5%.

We have just shown that Choi’s map provided an advantage
for specific states, while, in general, different maps cannot
be considered superior in terms of their entanglement
detection strength (even with the optimal choice of Q
for a given class of states). To illustrate this point let us
consider the following two-parameter family of states:

ρexample ¼ pjGHZ3ihGHZ3j þ qρ

�
1

9

�
þ 1 − p − q

27
1;

ð18Þ

and use our theorem to construct the witnesses in the same
fashion as in the first two examples. The results are
illustrated in Fig. 1 and showcase the detection power of
the witnesses derived from our main theorem and straight-
forward choices of jψbi without any optimization involved.
In conclusion we presented a framework that lifts any set

of bipartite witnesses to multipartite ones. It directly
connects positive maps with witnesses for partial sepa-
rability. The construction is simple, operational, and
experimentally friendly. We illustrated the power of the
criterion by presenting the first example of a 3 ⊗ 3 ⊗ 3
bound entangled state that is, at the same time, genuinely
multipartite entangled. We expect that this method should
find applications in all tasks that aim at characterizing
multipartite entanglement. In the future it will be of interest
to study the connection to semidefinite characterizations of
supersets of partially separable states (as with the “PPT
mixers” from Refs. [31,32]). One intriguing question that is
left open is the general strength of such criteria—while in
the bipartite case it is obvious that such a witness
construction is capable of detecting all entangled states,
the case is not so clear in the multipartite case. Can we
construct multipartite entangled states that, in principle,
cannot be detected by our framework?
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0.0
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FIG. 1 (color online). Here we illustrate the detection power of
two different maps for the state, Eq. (18). The regions are labeled
according to which criterion detects the state for these values of p
and q to be genuinely multipartite entangled (PPT refers to partial
transposition and Choi to Choi’s map).
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