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Wang et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009)] have found that in several systems the
linear time dependence of the mean-square displacement (MSD) of diffusing colloidal particles, typical of
normal diffusion, is accompanied by a non-Gaussian displacement distribution Gðx; tÞ, with roughly
exponential tails at short times, a situation they termed “anomalous yet Brownian” diffusion. The diversity
of systems in which this is observed calls for a generic model. We present such a model where there is
diffusivity memory but no direction memory in the particle trajectory, and we show that it leads to both a
linear MSD and a non-Gaussian Gðx; tÞ at short times. In our model, the diffusivity is undergoing a
(perhaps biased) random walk, hence the expression “diffusing diffusivity”. Gðx; tÞ is predicted to be
exactly exponential at short times if the distribution of diffusivities is itself exponential, but an exponential
remains a good fit for a variety of diffusivity distributions. Moreover, our generic model can be modified to
produce subdiffusion.

DOI: 10.1103/PhysRevLett.113.098302 PACS numbers: 82.70.Dd, 05.40.Fb, 05.40.Jc, 66.10.cg

In a homogeneous Newtonian fluid like water, the
diffusion of microscopic particles obeys laws of
Brownian motion known since Einstein [1]: The mean-
square displacement (MSD) hx2i along a particular direc-
tion, x, is linear in time t,

hx2i ¼ 2Dt; ð1Þ

whereD is the diffusion coefficient, or the diffusivity, while
the distribution of displacements is Gaussian [2]. In
crowded fluids containing colloidal particles, macromole-
cules, filaments, etc., Eq. (1) is generally not valid at all
times. In many such cases (see, e.g., Refs. [3–13]),
experimental data are consistent with hx2i ∝ tν, where
ν < 1, over a significant time range. This is called
anomalous diffusion or, more specifically, subdiffusion.
While much work has concentrated on the MSD, the full

displacement distribution (DispD) can be measured using
single-particle tracking (SPT) [3–6,11,12,14,15]. In the
continuous-time random walk (CTRW) model of anoma-
lous diffusion [16,17], the DispD is significantly non-
Gaussian with a characteristic cusp at x ¼ 0 [18]. However,
the fractional Brownian motion (fBm) model [19–21]
demonstrates that the combination of anomalous MSD
with a Gaussian DispD is possible.
On the other hand, it is often tacitly assumed that if the

DispD is non-Gaussian, then the factors that cause it to
deviate from Gaussian should also make the MSD non-
linear. Recent SPT experiments by Granick’s group [22,23]
show that this is not always the case. Several systems were
considered: polystyrene beads on the surface of a lipid
bilayer tube [22], beads in an entangled solution of actin
filaments [22], and liposomes in a nematic solution of actin
filaments [23]. In all three systems, the MSD is linear over

the whole experimental time range (from ∼0.1 s to ∼
seconds). Yet, coexisting with this linear MSD is a strongly
non-Gaussian DispD, with approximately exponential tails.
When a crossover to Gaussian DispD is observed, the linear
MSD dependence continues without any peculiarities. This
was termed “anomalous yet Brownian” diffusion [22].
Similar behavior was also observed for diffusion of tracer
molecules on polymer thin films [24] and in simulations of
a two-dimensional system of discs [25]. Since this is
observed in several different cases, it is likely a generic
feature of a certain class of systems. The goal of this paper
is to show that this may indeed be the case, by proposing a
simple and generic diffusing diffusivity model that indeed
exhibits this behavior.
Consider an unbiased one-dimensional random walk

(RW) with particle displacement Δxi at step i
(i ¼ 1;…; N) and a constant step duration Δt. The total
displacement after N steps is xN ¼ P

N
i¼1Δxi. The MSD is

hx2Ni ¼
XN
i¼1

hðΔxiÞ2i þ 2
XN−1

i¼1

XN
j¼iþ1

hΔxiΔxji: ð2Þ

The second sum in Eq. (2) is zero if the steps are
uncorrelated (hΔxiΔxji ¼ 0); if the ensemble-averaged
magnitude of a step is then time-independent (a condition
not satisfied for the CTRW models of anomalous diffu-
sion), the first sum and thus the whole MSD is proportional
to N. Note that complete independence of steps is not
necessary for this to be the case: It is sufficient for the step
directions to be uncorrelated (given Δxi, displacements
Δxj and −Δxj should be equiprobable, a condition violated
by the fBm). However, correlations of the step lengths are
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still allowed, in which case a non-Gaussian DispD may
result despite a linear MSD.
In fact, such correlations of step magnitudes without

correlations of step directions are to be expected in
heterogeneous systems where the environment changes
slowly in space and time. Over length and time scales
smaller than those of these heterogeneities, we can describe
a local environment approximately by its effective diffu-
sivity. The idea then is to think of a process where on a
short time scale particles undergo regular normal diffusion
(but with diffusivities different for different particles
depending on their local environment), but on a longer
time scale, as the environment changes slowly (either on its
own, or because the particle moves to a different environ-
ment, or both), the diffusivity of each particle changes
gradually. This leads to long-term correlations between step
magnitudes: since a long step Δx is more likely to be
associated with a region of high diffusivity, subsequent
steps of the same particle are also likely to be longer than
average, until the environment changes. However, the step
directions remain uncorrelated.
In the spirit of the preceding discussion, consider a model

in which noninteracting particles diffuse in one dimension,
each with its own instantaneous diffusion coefficient that
varies with time. Over a fixed Δt ¼ 1, a specific particle
with diffusivityDi at time step i is displaced by amountΔxi
drawn from the Gaussian distribution

PðΔxiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4πDi

p exp

�
−
Δx2i
4Di

�
: ð3Þ

In the stationary state, the diffusivity distribution is time-
independent, and the ensemble-averaged MSD is linear in
the time (or the number of steps N ¼ t=Δt):

hx2Ni ¼
XN
i¼1

hΔx2i i ¼ 2
XN
i¼1

hDii ¼ 2hDiN: ð4Þ

On the other hand, the fourth moment of the DispD deviates
from its Gaussian value, with the deviation being:

hx4Ni − 3hx2Ni2 ¼ 12ðhD2i − hDi2ÞN

þ 24
XN−1

i¼1

XN
j¼iþ1

ðhDiDji − hDiihDjiÞ: ð5Þ

Suppose the largest relaxation time of the correlator
hDiDji − hDiihDji as a function of ji − jj is τD. To model
a slowly changing environment, Di should vary little from
step to step, thus, τD ≫ 1. Then the double sum in Eq. (5)
dominates. Assuming hD2i − hDi2 ∼ hDi2, the non-
Gaussianity parameter α2 ¼ hx4i=3hx2i2 − 1 ∼ 1 for N ≲
τD and α2 ∼ τD=N for N ≫ τD, which only decays as 1=N.
Thus, significant deviations from Gaussianity are expected
well above τD, especially when looking at the tails of the

DispD. This is an important point when interpreting
experimental results.
Let us now make specific assumptions about the evo-

lution of D for individual particles. Since this evolution is
expected to be quasirandom in a complex system, we
assume that D undergoes a (perhaps biased) random walk
(diffusing diffusivity). Our assumption thatD changes little
from step to step allows us to switch to a continuous time t.
Then the diffusivity distribution (DifD) πðD; tÞ satisfies the
usual advection-diffusion equation,

∂πðD; tÞ
∂t ¼ −

∂J
∂D ; ð6Þ

−J ¼ ∂
∂D ½dðDÞπðD; tÞ� þ sðDÞπðD; tÞ; ð7Þ

where dðDÞ can be referred to as the diffusivity of the
diffusivity and −sðDÞ is the bias of the diffusion of
the diffusivity. Since D cannot be negative or higher than
the free-solution diffusivity Dmax, we add reflecting boun-
dary conditions J ¼ 0 at D ¼ 0 and D ¼ Dmax. In what
follows, unless stated otherwise, we assume that the system
is in the stationary state with the distribution πðDÞ defined
by JðDÞ ¼ 0 for all D.
Over times t ≪ τD the diffusivity of a particle can be

assumed constant. The DispD for an ensemble of particles
over such times does not depend on the diffusivity
diffusion, but only on πðDÞ, and is given by [23,26]

Gðx; tÞ ¼
Z

Dmax

0

πðDÞ
2

ffiffiffiffiffiffiffiffi
πDt

p exp

�
−

x2

4Dt

�
dD; t ≪ τD:

ð8Þ

In the simplest reasonable case dðDÞ ¼ const, sðDÞ ¼
const (s > 0 is necessary to bias D towards lower values,
as it should be in crowded systems). For Dmax → ∞, this
gives

πðDÞ ¼ 1

D0

expð−D=D0Þ; D0 ¼ d=s; ð9Þ

and [27]

Gðx; tÞ ¼ 1

2
ffiffiffiffiffiffiffiffi
D0t

p exp

�
−

jxjffiffiffiffiffiffiffiffi
D0t

p
�
; t ≪ τD; ð10Þ

an exactly exponential distribution. Even for a finite cutoff
Dmax ≫ D0,Gðx; tÞ is going to be close to exponential if jxj
is not too large.
We simulate the model with dðDÞ ¼ const, sðDÞ ¼

const by a Monte Carlo procedure with Δt ¼ 1. At each
time step, the particle displacement is drawn from the
Gaussian distribution (3) and the diffusivity change is
drawn from the Gaussian distribution with variance 2d

PRL 113, 098302 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

098302-2



shifted by −s. Whenever D exits the interval from 0 to
Dmax ¼ 1 it is reflected back into this interval. We chose
small values d ¼ 0.0025 and s ¼ 0.01 so the change of D
during one step is likewise small. Drawing the initial
diffusivities from the uniform distribution on [0;1], we
let them evolve for 1000 steps before taking displacement
data, which is sufficient for convergence of the DifD
towards that approximately given by Eq. (9). Figure 1
shows that exponential fits to the DispD tails at short t are
very successful, despite the fact that D0 ¼ 0.25 only
weakly satisfies the conditionD0 ≪ Dmax ¼ 1. Wang et al.
[22] found the observation of anomalous yet Brownian
diffusion on lipid tubules particularly surprising, since the
ratio of the effective diffusivity in the system and the free-
solution diffusivity (about 1=5) was atypically large for
systems with anomalous diffusion. Remarkably, the ratio of
the mean diffusivity hDi ≈D0 toDmax is even higher in our
example.
While the above provides a simple model for anomalous

yet Brownian diffusion, one may argue that πðDÞ is
unlikely to be exponential in all cases studied by Wang
et al. [22,23]. We note, however, that the exponential fits of
Wang et al. are not perfect. Therefore, showing that
other types of πðDÞ produce Gðx; tÞ with tails that
appear exponential would go some way towards address-
ing this concern. For a particular πðDÞ, the integral (8)
can be done numerically and the asymptotic behavior
can also be estimated using the steepest-descent method
[28]. For instance, for πðDÞ ∼Dα expð−D=D0Þ, there
is a power-law prefactor in the form of the tail,

Gðx; tÞ ∼ t−ðαþ1Þ=2jxjα expð−jxj= ffiffiffiffiffiffiffiffi
D0t

p Þ. This prefactor is
just a logarithmic correction on a semilogarithmic plot, and
if jαj is small (say, below 2), fitting with an exponential
over several decades in G is still adequate. When
πðDÞ ∼ exp½−ðD=D0Þβ�, that is, a stretched or compressed
exponential, the tail of Gðx; tÞ is likewise a stretched or
compressed exponential (up to a power-law prefactor) but
with the exponent γ ¼ 2β=ðβ þ 1Þ, which is always closer
to unity than β. For instance, for a Gaussian πðDÞ (β ¼ 2),
γ ¼ 4=3, and thus the tails are closer to being exponential
than Gaussian. It is only for β → ∞, when πðDÞ
approaches a step function, that γ → 2 and the tails become
Gaussian-like.
Another case of near-exponential tails of Gðx; tÞ is

provided by a physically motivated variant of the diffusing
diffusivity model with diffusivity changes coupled to
particle displacement. Let us make the simplest assumption
that the changes in the particle environment alone would
lead to a constant diffusivity of the diffusivity without bias.
As for the motion of the particle itself between different
environments, it is logical to assume that the longer the
particle step, the larger the typical diffusivity change during
that step. With this in mind, consider the model in which for
each step Δxi the associated diffusivity change ΔDi ¼
Diþ1 −Di is Gaussian with half-variance

d ¼ d0 þ fðΔxiÞ2; ð11Þ

where d0 and f are constants. The first term reflects the
random fluctuations of the local environment and the
second term is due to the particle’s moving between
different environments. As the mean-square step size is
itself proportional to the diffusivity (hΔx2i i ¼ 2Di), this is
approximately equivalent to having dðDÞ ¼ d0 þ 2fD and
sðDÞ ¼ 0 in Eq. (6). For these dðDÞ and sðDÞ with
Dmax ¼ 1, it follows from the condition J ¼ 0 with J
given by Eq. (7) that

πðDÞ ≈ 2f
lnð1þ 2f=d0Þ

×
1

d0 þ 2fD
; ð12Þ

quite different from Eq. (9). Yet, the resulting Gðx; tÞ can
still be fitted with exponentials at short times over a
significant region, as shown in Fig. 2. This is despite the
fact that the exponential is not an asymptotic solution at
either small or large x. For Fig. 2 we have used d0 ¼
5 × 10−5 and f ¼ 10−3, for which Eq. (12) gives
hDi ≈ 0.244, about the same as in the first version of
the model (as before, we let the diffusivities evolve, this
time for 2000 steps, before collecting data). On the other
hand, it is clear that for hDi even closer to Dmax,
exponential fits will not be as good since the expected
crossover to a Gaussian-like distribution at ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
Dmaxt

p
will

be too close to the root-mean-square displacement
∼

ffiffiffiffiffiffiffiffiffihDitp
. We have checked, in particular, that this is indeed
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FIG. 1. The displacement distributions after different numbers
of steps N for the diffusing diffusivity model [Eqs. (3), (6), and
(7)] with d ¼ 0.0025 and s ¼ 0.01 simulated as described in
the text. The solid line fits are exponential for the three smallest
values of N, Gaussian for N ¼ 2000, and the interpolating
function GðxÞ ¼ A expð−B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx=X0Þ2

p
Þ for N ¼ 700. The

inset shows the MSD and a linear fit.
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the case when πðDÞ is uniform on ½0;Dmax�, with
hDi ¼ Dmax=2. Therefore, the nonexponential DispDs seen
in Ref. [29], where the observed diffusivity is > 70% of
Dmax, are entirely expected. There may be other situations
where exponential fits fail, for instance, bimodal DifDs
[30]. An interesting situation was observed by Leptos et al.
[31] who studied diffusion of passive tracers in suspensions
of swimming microorganisms: since in addition to being
moved by the flow created by the microorganisms the
tracers undergo Brownian motion, the effective diffusivity
has a nonzero lower bound, which gives rise to a combi-
nation of a Gaussian DispD at small jxj and exponential
tails at large jxj, even for small t.
Interestingly, the same general approach can be used to

produce subdiffusion. Let sðDÞ ¼ 0 and dðDÞ ∝ Db in
Eq. (7), where b > 3 is a constant. In this case, there is no
stationary solution, except for the trivial πðDÞ ¼ δðDÞ.
Instead, there is a quasistationary solution of the form
πðD; tÞ ¼ tcfðDtcÞ, with c ¼ 1=ðb − 2Þ, that corresponds
to ageing with hDi decreasing gradually to zero as t−c

and the anomalous diffusion exponent being ν ¼
1 − c ¼ ðb − 3Þ=ðb − 2Þ. Our simulations confirm this
result (data not shown). We have also found that for
2 < b < 3, hDi decays faster than t−1, and the MSD
instead approaches a constant—the particle remains
trapped forever. We note that Massignan et al. [32] have
recently published a similar model of subdiffusion, likewise
assuming a power-law πðDÞ; the difference is that D is
piecewise constant as a function of time in their model.

To summarize, we have proposed a class of
one-dimensional models of anomalous yet Brownian dif-
fusion. Recognizing the fact that the linear MSD combined
with a non-Gaussian DispD should be observed for random
walks without direction memory, but with diffusivity
memory, we have assumed that the instantaneous effective
diffusion coefficient of a particle changes gradually at
random, or diffuses (with or without bias)—hence our
expression “diffusing diffusivity.” Physically, this corre-
sponds to the environment of the particle changing slowly
—either on its own or because the particle moves to a
different environment. Yet another possibility is a particle
slowly changing its own properties (e.g., a protein changing
its conformation). The short-time DispD is determined
solely by the stationary DifD. This DispD is exactly
exponential when the DifD is exponential, but an expo-
nential remains a good fit to a significant part of the tail of
the DispD for a wide variety of DifDs, which may explain
the available experimental results. The same approach can
produce subdiffusion, which may provide another possible
route to subdiffusion in addition to the CTRW, the fBm,
and obstructed diffusion [33], although the peculiar power-
law dependence of the diffusivity of the diffusivity required
needs to be justified on physical grounds.
Just like the CTRW, our approach is mean-field since

random diffusivity changes neglect the possibility of
returning to the same environment. This is a better
approximation in higher dimensions and for environments
changing rapidly on their own. To what extent the con-
clusions are modified, in particular, in the least favorable
case of a static diffusivity distribution in one dimension will
be a subject of future studies. Also, while we have assumed
a gradual change of the diffusivity, we expect the results to
be applicable qualitatively to cases with sharp boundaries
between regions of different diffusivities, as in [32]. Again,
this will be tested in the future.
While our model is very generic, we do not claim that it

can account for all possible cases of anomalous yet
Brownian diffusion. For instance, if in the CTRW model
of anomalous diffusion the waiting time distribution is
modified by introducing a finite cutoff, then the MSD
measured after equilibrating for much longer than the cutoff
time will be perfectly linear [34,35], and our calculations
show that exponential tails in the DispD are possible. While
there is some similarity to diffusing diffusivity (waiting
periods can be interpreted as periods of low diffusivity that
changes slowly), it is a distinct model [for instance, it is not
obvious how to apply Eq. (8)] that deserves further study.
We believe, however, that our model fits better at least some
of the observed cases of anomalous yet Brownian diffusion,
for example, the diffusion on a lipid tube where a relatively
high global diffusion coefficient makes long trapping
characteristic of CTRW unlikely and an additional peak
at zero in the DispD corresponding to particles that have not
moved yet is absent. Another model producing exponential
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FIG. 2. The displacement distributions after different numbers
of steps N for the diffusing diffusivity model with coupling to
particle displacement with d0 ¼ 5 × 10−5 and f ¼ 10−3 in
Eq. (11), simulated as described in the text. The solid line fits
are exponential for the four smallest values of N, Gaussian for
N ¼ 5000, and the interpolating function GðxÞ ¼
A expð−B
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tails has been discussed by Chaudhuri et al. [36], although
in the case in which the MSD would be linear (α ¼ 1,
l ¼ 0 in the authors’ notation) the exponential tails are not
particularly prominent.
Finally, we note the similarity of our model to some

models of market price fluctuations (see, e.g., [37]),
although the details differ.
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