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A computational model of finite-length undulatory swimmers is used to examine the physical origin of
the effect of elasticity on swimming speed. We explore two distinct target swimming strokes: one derived
from the motion of Caenorhabditis elegans, with large head undulations, and a contrasting stroke with
large tail undulations. We show that both favorable stroke asymmetry and swimmer elasticity contribute to
a speed-up, but a substantial boost results only when these two effects work together. We reproduce
conflicting results from the literature simply by changing relevant physical parameters.
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Low Reynolds number swimming of microorganisms in
Newtonian fluids is an extensively studied classical prob-
lem, and the underlying physics is well understood [1].
However, many biological fluids such as mucus are
mixtures of water and polymers and are more appropriately
described as viscoelastic fluids. Recently, there have been
many studies on locomotion in complex fluids [2–16]. Both
experiments and theory have exhibited that viscoelasticity
can lead to either an enhancement or retardation of
swimming, but a complete understanding of this problem
is lacking. Given the many different types of materials that
exhibit viscoelastic properties, and the many different types
of small scale organisms, it is unlikely that there is a simple
answer to what effects viscoelasticity has on swimming,
and subclasses of problems must be considered.
Here we focus on finite-length undulatory swimmers

with a large-amplitude planar beat in an Oldroyd-B fluid.
Asymptotic analysis of infinitely long, small-amplitude
swimmers showed that swimming is hindered by the
addition of elastic stresses [9]. Numerical simulation of
finite-length, large-amplitude swimmers showed that,
under some conditions, the swimming speed may be
enhanced by elasticity [13], with a peak in swimming
speed when the relaxation time of the fluid is similar to the
period of the undulation. However, experimental measure-
ments of the undulatory motion of Caenorhabditis elegans
showed that swimming is always slowed with increasing
elasticity [14], while an experiment using a physical model
of a swimmer showed that swimming speed was an
increasing function of the elasticity of the fluid [12].
In this Letter, we use computational modeling to

examine the physical origin of the elastic speed-up or
slow-down in finite-length undulatory swimmers. Our data-
based model stroke comes from the motion of C. elegans
[14], whose stroke shows larger undulations at the head.
Others have studied strokes with larger undulations at the
tail [12,13]. We contrast these two different types of
swimmers and show that stroke asymmetries lead to stress

distribution asymmetries which, when favorable, can con-
tribute to an elastic speed-up. When the swimmer is
flexible, the body response to changing fluid stresses
provides an additional speed-up. We conclude that a
substantial speed-up, like those reported in the literature
[12,13], can occur only when these two effects work
together. We reproduce several seemingly conflicting
results [12–14] and demonstrate that they are complemen-
tary rather than contradictory.
The model.—We model the swimmer as an inextensible

flexible sheet of finite length L immersed in a 2D fluid. We
describe the undulatory motion of the swimmer by a
curvature function of the form

κ0ðl; tÞ ¼ AðlÞ cos½2πt=T þ ϕðlÞ�; ð1Þ

where l ∈ ½0; L� is the body coordinate (l ¼ 0 is the head).
We base our model parameters on C. elegans swimming in
a Newtonian fluid [14]; by fitting to data, we obtain
L ¼ 1.2 mm, T ¼ 0.5 s, AðlÞ ¼ 5.3–3.1l mm−1, and
ϕðlÞ ¼ πðL − lÞ mm−1 [17]. Changes in curvature propa-
gate as waves from the head, with the largest curvature
amplitude, to the tail. We call this type of swimmer a
“burrower,” in contrast to swimmers with larger curvature
amplitude at the tail, “kickers,” such as in Refs. [12,13].
The kicker stroke is related to the burrower stroke by
κkicker0 ðl; tÞ ¼ κburrower0 ðL − l; t0 − tÞ, where t0 is a phase
shift that keeps the head in phase with the burrower.
We use the immersed boundary method to solve for the

coupled motion of the fluid and the swimmer [18]. Both
inextensibility and shape are imposed (approximately) by
forces that are designed to penalize extension and deviation
from a prescribed target curvature. These forces are derived
from the variation of bending and extension (stretching)
energy functionals. For example, the bending energy is
Eb ¼ kb=2

R
Γ ðκ − κ0Þ2dl, where kb is the bending stiff-

ness, κ is the curvature of the sheet, and κ0 is the prescribed
target curvature. One can interpret the model as an active
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sheet with bending stiffness kb driven by an active body
moment density kbκ0. We scale forces relative to viscous
forces so that, for kb ≫ 1, the realized shape of the
swimmer is very close to the prescribed shape; we call
these swimmers stiff and use kb ¼ 40 in our simulations.
For kb ∼ 1, elastic forces and viscous forces are of the same
scale, and the realized shape is the result of fluid-structure
interaction; we use kb ¼ 2 and call these swimmers soft.
The viscoelastic fluid is described by the Oldroyd-B

model at zero Reynolds number [19], regularized by
polymer stress diffusion [20,21]. The system of equations
describing the fluid are

Δu −∇pþ ξDe−1∇ · τ þ f ¼ 0 and ∇ · u ¼ 0; ð2Þ

τ
∇ þ De−1ðτ − IÞ ¼ ε△τ; ð3Þ

where u is the fluid velocity, p is the pressure, τ is the
viscoelastic stress, and f is the elastic force density generated
by the swimmer. The upper convected time derivative is

defined by τ
∇ ≡ ∂τ=∂tþ u ·∇τ − ð∇uτ þ τ∇uTÞ. Here ξ is

the ratio of polymer to solvent viscosity, De ¼ Tp=Tf is the
ratio of the elastic relaxation time to the characteristic flow
time scale, and ε ≪ 1 is the stress diffusion coefficient.
Based on the data which defined the burrower stroke, we
nondimensionalize with a characteristic length scale of
1 mm, time scale of Tf ¼ 1 s, and stress scale μ=Tf, where
μ is the viscosity of water. Other model and numerical
parameters are given in Ref. [22].
Results.—Figure 1 shows the average Stokes-normalized

swimming speed as a function of the Deborah number for
soft and stiff kickers and burrowers. The time average is
taken over one period after the speed has equilibrated,
which we take as the greater of 20 periods or 20 times the
relaxation time. For all but the soft kicker, any elasticity
tends to slow down the swimmers, consistent with the
predictions of Refs. [9,11]. Here we examine what allows
the soft kicker to overcome this elastic resistance, and, in
doing so, we systematically demonstrate how changing
fluid elasticity and swimmer elasticity affects swimming

speed. From this, we gain insight into the local maximum in
swimming speed for De ∼ 1 (for all but the stiff burrower).
Finally, we examine the swimming speed slow-down
for De≳ 2.
First we study the effect of fluid elasticity by looking at

the polymer stress induced by the motion of soft kickers
and burrowers. We focus on De ¼ 1 to gain insight into the
local maxima seen in Fig. 1. Figure 2(a) shows the polymer
stress energy, computed as the trace of the polymer stress
tensor, about the soft kicker and burrower (head on the
right) at two times during a period for De ¼ 1. Two
significant differences between the kicker and burrower
stresses are their scales and their spatial distributions. For
the kicker there is a concentration of stress at the tail which
persists over the period, whereas for the burrower the
polymer stress concentrates along the entire body of the
swimmer and is about 3–4 times smaller at its maximum.
To analyze the effect these stresses have on motion, we

look at the swimmer horizontal center-of-mass position
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FIG. 1 (color online). (a),(b) The ratio of average swimmer
speed to that of the Newtonian swimmer as a function of De,
varying stroke type and bending stiffness.

FIG. 2 (color online). (a) Contour plots of the polymer stress
energy at two times during a period for De ¼ 1: (i),(ii) soft kicker,
(iii),(iv) soft burrower (head on the right). (b),(c) The location of
the horizontal component of the swimmer center of mass is
plotted over one period at t ¼ 10 for De ¼ 0; 1; markers
correspond to local maxima in front (circles) and back (squares)
stress. (d),(e) Back-front stress asymmetry ratio (time-averaged
ratio of back stress to front stress) for 0 ≤ De ≤ 5.
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over one period shown in Figs. 2(b) and 2(c). With no
elasticity (De ¼ 0) we see major differences in the trans-
lational locomotion inherent to the kicker versus burrower
stroke. In particular, burrowers swim faster than kickers,
because there is little to no recoil over the cycle of the
stroke, whereas kickers lose about 25% of progression to
recoil. Elasticity affects both progression and recoil but in
different ways for kickers and burrowers, due to the
different stress distributions for these strokes.
For the kicker, elasticity (0 < De≲ 3) enhances pro-

gression by as much as 20%, while recoil remains nearly
constant. The onset of enhanced progression for the De ¼ 1

kicker coincides with a local maxima in the average back
stress (average stress to the left of the center of mass);
see Fig. 2(a)(i). In other words, when the back stress is
greatest, the swimmer moves forward. Similarly, when
the front stress is greatest, the swimmer begins to recoil
[Fig. 2(a)(ii)]. The local maxima of back and front stress are
noted in Fig. 2(b) [and 2(c)] with squares and circles,
respectively. The average back stress is more than 5 times
as large as the average front stress, and we see an
enhancement to progression as if the swimmer is “kicking
off” of the accumulated stresses. In Ref. [13], the authors
conjectured that the region of highly strained fluid at the tail
restricts backward slippage contributing to an increase in
speed. While we do see backward slippage, it appears to be
nearly constant as elasticity changes.
Like the kicker, the burrower’s back stress is maximized

at the beginning of progression [Fig. 2(a)(iii)], and the
front stress is maximized at the beginning of recoil
[Fig. 2(a)(iv)]. Unlike the kicker, we see enhanced recoil
as if the accumulated front stress must be “burrowed
through.” The differing response may be due to the fact
that for the burrower the polymer stress is distributed much
more evenly around the body, and, in particular, the
burrower has, on average, half as much back stress and
twice as much front stress as the kicker.
Now turning to both soft and stiff swimmers at all De, we

utilize this back-front asymmetry in stresses to quantify an
“asymmetry ratio,” the time-averaged ratio of back stress to
front stress, plotted in Figs. 2(d) and 2(e). We see that the
kickers overall have high (≥ 2) asymmetry ratios which
reach a maximum around De ∼ 1. This back-front asym-
metry maximum correlates well with the maximum in
swimming speed for kickers seen in Fig. 1(a) and likely
contributes to the speed boost seen for De ∼ 1. For
burrowers, this ratio is close to one for all De. This is
consistent with the fact that the burrowers do not see a
speed boost. For both kickers and burrowers, this ratio
decreases as the swimmer goes from soft to stiff. The stiff
kicker retains the De ∼ 1 local maxima, and, though
decreased, it is still greater than 3. The stiff burrower
meanwhile always has a ratio less than 1, meaning there is
more front stress than back. Fluid elasticity contributes to a
speed boost when there is a high asymmetry ratio, but this

measure alone does not explain the local maximum in
speed ratio at De ∼ 1 for the soft burrower nor the slow-
down at large De. Next, we look at how swimmer elasticity
affects the swimming speed.
The viscoelastic boost for soft kickers depends crucially

on the elasticity of the swimmer, and there are significant
deviations between target and achieved curvatures, varying
with De, that can be as large as 40%. For the stiff kicker,
deviations are at most 3%. Figure 3(a) shows the kinemat-
ics of the swimmer body over a half-period for a stiff kicker
in a Newtonian fluid (De ¼ 0) and soft kickers at
De ¼ 0; 1. The stiff and soft strokes are noticeably differ-
ent, and the addition of elasticity tends to return the
stroke towards the more favorable stroke of the stiff
swimmer [26].
To isolate the effect of passive dynamics for soft

swimmers, we index the stroke changes with De by fitting
each soft swimmer’s curvature deviation to the solution of
the equation that describes a freely vibrating beam and use
the first four modes to capture these deviations. We then
prescribe this idealized curvature as the target curvature for
a stiff swimmer, and the so-called StrokeDe is the parameter
referring to the stroke change. Figure 3(b) (solid curve)
shows the non-normalized swimming speed for a stiff
kicker and burrower, in a Newtonian fluid, as a function of
this stroke parameter. Both the kicker and burrower show
dramatic speed-ups of 25% and 10%, respectively, as a
function of stroke changes alone with maxima coming from
the De ¼ 1 soft swimmer.
Figure 3(b) also shows how the swimming speed

depends on StrokeDe when elasticity is added to the fluid
(De ¼ 0.1; 1.0; 2.0). The kicker shows a nonmonotonic
response to elasticity; a small amount of elasticity
(De ¼ 0.1) does not boost the swimming speed, but with
De ¼ 1; 2 there is a fluid elasticity boost, strongest at
StrokeDe ∼ 1 and De ∼ 1 which diminishes for higher
StrokeDe and De. For the burrower, fluid elasticity mono-
tonically hinders swimming speed.

FIG. 3 (color online). (a) Kicker shapes at times evenly spaced
within a half-period: stiff at De ¼ 0, soft at De ¼ 0; 1. (b) Non-
normalized average speed for stiff kickers and burrowers for
different De (see markers) as a function of StrokeDe, where
changes in this parameter correspond with passive dynamic stroke
changes for soft swimmers indexed by De.
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With this additional information, we can revisit Fig. 1
and examine the local maxima. For the soft kicker, stroke
changes induced by passive dynamics boost the swimming
speed, and the high back-front asymmetry ratio indicates a
boost from fluid elasticity as well. Both of these boosts are
largest at De ∼ 1. Thus the soft kicker has a “double boost,”
which may be necessary to get an advantage from elasticity.
The soft burrower gets a boost from the passive dynamics,
also largest at De ∼ 1, but does not get a boost from the
fluid elasticity. A cancellation of these effects leads to a
nearly constant speed for small De with a slight peak at
De ¼ 1. The stiff kicker sees no advantage from passive
dynamics (as the stroke is very close to the prescribed
stroke) but does get a boost from the back-front asymmetry
of elastic stress (again largest at De ∼ 1). This single boost
also leads to a nearly constant speed for small De with a
peak at De ¼ 1. Finally, the stiff burrower has neither
boost, and we see a monotonically decreasing swimming
speed as a function of De. With this explanation of the low
De behavior of the speed ratio, we next consider the large
De effect.
Figure 1 shows that for De ≥ 2, for all swimmers, the

swimming speed is monotonically decreasing. We can
remove this large De effect by looking at a short time
scale. We take the average of the swimming speed after ten
periods, at which time the speed has effectively equilibrated
for De ≤ 1 but is still changing for larger De. Figure 4(a)
shows the average speed ratio as a function of De when the
average is taken at this short time scale. The swimming
speed is monotonically increasing in De for soft kickers.
Soft burrowers and stiff kickers have near constant swim-
ming speeds on short time scales, while stiff burrowers are
slowed substantially.
On short time scales, there is little change in the size of

the polymer stress, the asymmetry ratio, and the passive
dynamic stroke changes over 1 ≤ De ≤ 5 (data not shown).
These results imply that the early elastic effects come from
the passive dynamic stroke changes and the polymer stress

asymmetries. In Fig. 4(b), we show the evolution of the
maximum of the polymer stress energy, and at short times
the size of the stress is similar for 1 ≤ De ≤ 5, but there is a
600% increase in stress from De ¼ 1 to De ¼ 5 at
equilibration (similar results hold for the soft burrower).
For stiff swimmers, the maximum stress energy grows on
the same time scale, although it is between 2 (at De ¼ 1)
and 6 (at De ¼ 5) times larger overall. The increased
resistance from these large elastic stresses that develop
on long time scales swamps any advantage gained from
initial asymmetries in fluid elasticity, or passive dynamic
stroke changes, hindering swimming speed for large De.
Discussion.—Our model of finite-length undulatory

swimmers shows that, while swimming speed depends
on the type of stroke, it also depends sensitively on both
fluid elasticity and swimmer elasticity. While fluid elas-
ticity generically slows swimmers down, a speed boost can
be gained for soft swimmers from passive dynamic stroke
changes and for kickers from favorable asymmetries in the
polymer stress distribution. Soft kickers get both boosts,
which results in a viscoelastic speed-up. With only one
boost, stiff kickers and soft burrowers are always hindered
by fluid elasticity but only slightly for small De. Large
elastic stresses which develop on long time scales for large
De slow down swimmers.
We have presented elastic speed-up results for a single

curvature gradient with a fixed amount of body elasticity.
By changing these two parameters, one can obtain different
percent elastic speed-ups (well beyond 25%) with local
maxima occurring at a range of De. In fact, for certain
parameters we see speed-up beyond De ¼ 5, consistent
with the results reported in Ref. [12]. Returning to the other
conflicting results of Refs. [13,14], the stroke used here is
based on the data from [14], and we are able to recover the
results from [13] by simply changing the direction of the
wave. We note that, although our Deborah number is
defined slightly differently from [13], there is no signifi-
cance to the specific value of De where the speed-up is
maximized, because it depends sensitively on the curvature
gradient and the stiffness parameter.
In the model presented here, body stiffness and applied

active moments are both proportional to the body stiffness
parameter kb. Alternately, one could change the body
stiffness and strength of driving moments independently
to isolate their effects on the resulting stroke. Real biological
systems are much more complicated, in that the driving
forces change in response to mechanical, neurological, or
chemical feedback from the environment. For example,
hyperactivated spermatozoan cells exhibit very different
flagellar waveforms and swimming kinematics than non-
activated cells [27]. Hyperactivation results in slower swim-
ming in Newtonian fluids but faster swimming in
viscoelastic fluids [28], and it is essential to fertilization [29].
There are similarities between our results and those for

helical swimmers. Like undulatory swimmers, asymptotics

FIG. 4 (color online). (a) The ratio of average swimmer speed
to that of the Newtonian swimmer as a function of De, varying
stroke type, bending stiffness on a short time scale. (b) Time
evolution of maximum polymer stress energy for 1 ≤ De ≤ 5,
soft kicker.

PRL 113, 098102 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

098102-4



show that small pitch angle helical swimmers are hindered
by elasticity [8], but for a sufficiently large angle, fluid
elasticity can increase the swimming speed with a peak
near De ∼ 1 [2,15]. Unlike undulatory swimmers, the
speed-up was observed for infinitely long swimmers. In
Ref. [15], they observed stress asymmetries in the angular
direction that appear related to the elastic speed-up or slow-
down, consistent with our observation of the role of the
back-front stress asymmetry. We note that the size of the
boost observed in physical experiments [2] was substan-
tially greater than in the theoretical result of a rigid helix
[15]. Our results indicate that a passive elastic response of
the body can provide a significant additional boost, and this
may also be the case for helical swimmers, but to our
knowledge this has not been studied.
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