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We study the propagation of sound through a bidimensional granular medium consisting of photoelastic
disks, which are packed into different crystalline and disordered structures. Acoustic sensors placed at the
boundaries of the system capture the acoustic signal produced by a local and well-controlled mechanical
excitation. By compressing the system, we find that the speed of the ballistic part of the acoustic wave
behaves as a power law of the applied force with both exponent and prefactor sensitive to the internal
geometry of the contact network. This information, which we are able to link to the force-deformation
relation of single grains under different contact geometries, provides enough information to reveal the
structure of the granular medium.
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In addition to its practical and industrial relevance,
granular materials have lately gained a lot of attention
from the scientific community [1], as they have become
simplified models of complex phenomena: jamming tran-
sition [2–4], self-organized criticality [5], earthquake
dynamics [6,7], etc. Being able to monitor the structure
of the system in a tabletop experiment is one of the
advantages of these simplified models, and (especially in
the case of earthquakes) acoustics is often the most
appropriated tool of analysis. However, granular materials
are still reticent to leave clear fingerprints on acoustic
waves [8–10]. This “misbehavior” is directly related to the
fact that, in a granular medium, loads are transferred
through contact mechanisms between neighboring particles
creating force chains [11]. These chains are responsible for
a huge degree of heterogeneity inside the system [12],
which increases the dispersion of the signal. It is also
known that acoustic waves favor speed and amplitude
along force chains [13], and making the scenario more
complex, contacts can activate and deactivate during the
passage of the acoustic wave [14,15], amplifying its
attenuation.
In this Letter, we show that valuable information of the

internal structure of a compressed granular medium can be
extracted by studying the ballistic (i.e., nondispersive) part
of the sound wave. This contrasts with techniques based on
the multiple scattering of acoustic waves that have received
special attention in recent years [16–20]. Unlike the
diffusive part of the signal, the ballistic part provides a
more direct and simpler analysis of the granular structure.
In strained granular materials, the speed of sound c has a
nonlinear behavior with the applied force F as c ¼ KFα

[21,22]. By studying the compression of granular materials
with different crystalline structures, we found that the
exponent α depends on the contact number of the grains,
while the prefactor K brings information about the
anisotropy of the medium. When compressing disordered

structures, we can observe different scalings, which indi-
cates a change in the internal structure of the medium.
Being able not only to detect a change in the structure of the
granular system but also to recognize its nature is of great
interest when trying to predict the abrupt events denomi-
nated avalanches [23–25], earthquakes [6], or unjamming
events [3,26], according to the subject of the study.
The experimental setup consists of a monolayer of

disks confined into a rectangular cell placed vertically
(see Fig. 1). This cell has an initial size of 162 × 96 mm2

(W ×H) and 3.6 mm thickness. The surrounding walls are
built in the same material as the grains. The bottom and
lateral walls are fixed, while the upper one is mobile
allowing the compression of the granular medium. In order
to avoid three-dimensional (3D) effects, the cell is confined
between two acrylic plates. The whole setup is held in an
external metallic frame. We use cylindrical grains of
6.4 mm diameter (d) and 3.5 mm thickness (L). These
disks are made of Durus White 430 and have been
generated in a Objet30 3D printer. Profile measurements
of the surface roughness of the printed grains give a

FIG. 1 (color online). Sketch of the experimental setup. Sv and
Sh are acoustic sensors placed on the top wall and lateral walls,
respectively.
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peak-to-peak maximum value of 25 μm on the curved
side of the cylinders. The zero-frequency Young modulus
of Durus material is E≃ 100 MPa. The translucent and
birefringent character of the grains allows the visualization
of the stress inside the disks when placing the experimental
setup between two circular polarizers (Fig. 2). We take
images of the experiment with a Nikon D700 camera
(0.045 mm=pixel resolution).
In order to set the structure of the packing, we have

designed specific boundary conditions that consists of a
row of half grains separated by a specific gap between them
and fixed to the bottom wall [27]. We have studied three
different crystalline structures (Fig. 2): squared at 45°
(S45), squared at 90° (S90), hexagonal at 60° (H60), and
different disordered structures (D). For comparison, we
have also performed an experiment in a one-dimensional
configuration (W ¼ d [22]). The disordered structures are
obtained by pouring the grains randomly between the
acrylic plates. Figure 2(d) shows the disposition of
the grains (a video in the Supplemental Material [28]
shows the contraction of the system).
The granular medium is excited mechanically by a thin

metallic rod connected to a loudspeaker (see Fig. 1). The
rod moves freely through a hole at the center of the bottom
wall and hits one grain. This generates an acoustic wave of
about 4 kHz frequency with a pressure amplitude much
smaller than the confining pressure to ensure the propa-
gation of linear acoustic waves. For this frequency, the
speed of sound in Durus is≃1200 m=s. The acoustic signal
travels across the medium (see a video of the wave
propagation in the Supplemental Material [28]) and is
recorded by six acoustic sensors (CTS Valpey Corporation
VP-1.5) that are placed on the lateral and upper walls of
the cell. Because of the experimental configuration, we are
only measuring compressional waves (P waves), which are

the fastest and the first to be recorded. In order to induce a
deformation in the granular system, we set a jack between
the upper wall of the cell and the metallic frame. This jack
is connected to a force sensor (Interface, SML-300 with a
stiffness of 1.75 × 107 N=m) that measures the applied
force over the grains.
First, we apply a given deformation over the system.

Then, we excite the granular medium by sending an
electrical signal to the loudspeaker. The emitted acoustic
signal and the applied force are recorded continuously by
an NI-USB-6366 card at a frequency of 2 MHz during 1.1 s
(150 ms before and 950 ms after the emission). We have
repeated the experiments with the same conditions to check
the reproducibility of the results. Finally, for each acoustic
excitation, we record the image of the whole system, and a
simple routine detects the number of contacts of each grain.
In order to extract the time of flight, we perform a spectral
analysis of the recorded signal [29]. This method provides
more accurate results than a direct thresholding since it
takes into account all the frequencies and detects the
quickest one (independent of dispersive effects).
Figure 3 shows the speed of sound as a function of the

applied force over the system. As expected, we observe
c ∼ Fα. We point out the existence of two different sets of
results. For experiments performed on structures S45 and
H60 (that have 4 contacts per grain), we obtain α ¼ 0.16�
0.03 while for S90 (2 contacts per grain) we get
α ¼ 0.50� 0.06, that is, the same scaling observed for
the one-dimensional case [inset in Fig. 3(c)]. The result for

FIG. 2 (color online). Detail of the granular monolayer for the
four different geometries studied: (a) S45, (b) H60, (c) S90, and
(d) D. By placing the setup between two crossed circular
polarizers, it is possible to identify the contacts.
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FIG. 3 (color online). Scaling of the sound speed as a function
of the applied force for the different structures studied. Filled
symbols and open symbols correspond to measurements at the
top wall (cv) and lateral walls (ch), respectively. The insets in (a),
(b), and (d) show cv=ch. The inset in (c) corresponds to the speed
of sound through a one-dimensional chain of cylinders. The
straight lines in the figures correspond to guides to the eye for two
different power-law behaviors: (- - -) correspond to F0.16 and
(- · -) to F0.5.
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the one-dimensional chain of cylinders differs from the
one reported in Ref. [22]. It is important to point out the
existence of a preliminary regime at low F (evident in
structure H60) that corresponds to the progressive activa-
tion of contacts in the granular lattice. A special case is the
disordered configuration D where we observe the two
scaling behaviors. For low loadings, we observe the 0.5
exponent, and at larger forcing we recover the 0.16
exponent. In the case shown in Fig. 3(d), the crossover
that separates both regimes appears at 80 N. This crossover
does not appear at the same applied force for different
experiments, and it is very dependent on the initial
configuration of the specific experiment, which is a
common issue in granular media [1].
The propagation of sound in granular materials is

governed by the contact mechanics of its grains [30]. By
analogy with the discrete model of phonons in a solid [31],
we consider that the sound speed c in a chain of grains of
stiffness κ, mass m, and distance between contacts dc is

c ¼
ffiffiffiffiffiffiffiffiffi
κ=m

p
dc cosðπdc=λÞ≃

ffiffiffiffiffiffiffiffiffi
κ=m

p
dc ð1Þ

in the regime where the wavelength λ is large compared to
the grain size [32]. A similar scaling was already proposed
by previous authors (see Ref. [33] and references therein).
In this case, κ can bewritten as df=dδ, where f corresponds
to the contact force between grains, and δ is the deforma-
tion [34]. In order to recreate the contact mechanics of
the experiments shown in Fig. 3, we have performed
experiments where a single grain is compressed between
two flat plates and between two π=2 wedges (see Fig. 4),
made of Duralumin, that provide 2 and 4 flat contacts to the
grain, respectively. Figure 4 shows the force-deformation
curves for a single cylindrical grain in the two different
contact geometries. In the 2 contacts geometry, the
force-deformation curve shows a power-law regime with

an exponent β≃ 3=2 for small forces, with a crossover to
an exponential behavior for large forces. In the 4 contacts
geometry, the power-law relation is more robust and spans a
larger range of deformations. In this case, we extract the
value of the exponent β ¼ 1.5� 0.3 (see inset in Fig. 4). A
very similar value for the power-law exponent has been
already reported for viscoelastic cylinders, and deviation
from the expected value (Supplemental Material [28])
has been attributed to the role of asperities (see the
Supplemental Material of Ref. [4]). Grains made with
different materials follow the same behavior
(Supplemental Material [28]), which indicates that the
elastic properties of the cylinders prevail in this force-
deformation relation. With this information and using
κ ¼ df=dδ and c ∼ κ1=2, we can calculate the α exponent
(assumingF ∼ f). If f ∼ δβ with an exponent β≃ 3=2, then
c ∼ Fðβ−1Þ=2β ∼ Fα with α≃ 1=6, while a relation
f ∼ eδ will give c ∼

ffiffiffiffi
F

p
, then α ¼ 1=2. As the distribution

of forces is highly inhomogeneous (even in a regular
structure [12]), and force chains dominate the dynamics,
in the two contacts geometry we do not notice the low
forces regime with a power-law exponent 1=6 and only
detect the exponent 1=2, associated with the exponential
part in the force-deformation relation of Fig. 4. This also
explains the exponent at low force observed in Fig. 3(d). In
the case of 4 contacts, the normal force per contact for a
given applied force per grain will be significantly lower
than in the 2 contacts case, which increases the possibility
to observe the power-law regime in the force-deformation
relation leading to the power-law exponent 1=6 in Fig. 3.
The inverse transition observed in Fig. 3(d) compared to the
transition observed in Fig. 4 when increasing the applied
force corresponds to the progressive shift from the large
force exponential regime for a 2 contacts configuration to
the large force but still power-law regime for a 4 contacts
configuration that can be observed at the same applied
force. This evolution of the grain coordination number is
discussed in more detail below. From that perspective, the
experimental observations plotted in Fig. 3 are in perfect
agreement with the force-deformation relations of single
grains. Also, from Fig. 4 we find that the effective stiffness
varies between 3 × 105 and 2 × 106 N=m. From Eq. (1) we
get c≃ 370–860 m=s, which corresponds rather well to the
measured range of sound speeds.
This analysis reinforce the fact that the exponent α

appears to be directly related with the coordination number
of the grains. To confirm this in the case of the disordered
configuration, Fig. 5 shows the number of grains that have
2, 3, and 4 contacts, as a function of the applied force. This
plot shows that at 80 N the number of grains with 4 contacts
start to increase from 0% to 20%. This crossover coincides
with the change in the α exponent, indicating that the
change on the scaling of c with F corresponds to a change
in the coordination number of the grains involved in the
path of the sound wave.

FIG. 4 (color online). Measured force-deformation relation for
a single grain in a 2 contacts geometry (2C) and in a 4 contacts
geometry (4C). The power law f ∼ δ3=2 is represented by
discontinuous lines while the exponential law f ∼ eδ is repre-
sented by a dot-dashed line; δ is the total deformation of the
compressed grain (δ ¼ 2δ1).
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Figure 3(b) also shows the existence of a vertical shift
in the c vs F curve between sensors placed in the top part
and the lateral walls. This effect is clear for the case of
H60 and does not occur in the S45 configuration. The insets
of Figs. 3(a), 3(b), and 3(d) display the ratios between
the speed of sound measured on the top part cv and the side
walls ch (the values of ch are negligible compared to cv in
the case of S90).
Since the sound propagation is governed by the contact

mechanics between grains, the absolute value of the
recorded signal will be also affected by the relative
orientation of the acoustic source and the sensors, but
more important, by the anisotropy of the contact distribu-
tion for single grains. In a regular configuration, the
distances dc between contacts in the vertical and horizontal
directions are proportional to d sin θ and d cos θ, respec-
tively, where θ is the angle between neighbors at different
rows (see Fig. 2). Then, from Eq. (1), the scaling of the
vertical and horizontal sound speed are cy ∼ sin θ and
cx ∼ cos θ. Finally, the speed of sound recorded by a
sensor placed at a horizontal angle η with respect to the
source follows: cη ∼ sin θ sin ηþ cos θ cos η. Since the
angles of the top and lower lateral sensors are ηv ∼ 70°
and ηh ∼ 20°, respectively, the ratio of the velocities
correspond to 1 for S45 (θ ¼ 45°) and 1.3 for H60
(θ ¼ 60°), which is consistent with the measured values
plotted in the inset of Fig. 3 where we observe 0.93 and
1.33 for S45 and H60, respectively. The ratio cv=ch for
the disordered configuration [Fig. 3(d)] is evolving towards
a more stable geometry (“H60-like”) at the crossover
force 80 N.
Finally, we are able to identify the “main” coordination

number of a granular matter with an a priori unknown
structure by studying the scaling of the sound speed as a
function of applied loads (we use the word “main” to refer
to the chain that supports a stronger load favoring the
propagation of the sound wave). This is due to a different

behavior of the force-deformation response of single grains
under different contact geometries. In contrast with pre-
vious works, we observe that the relation between the force
and deformation of two cylindrical grains in contact with
parallel axis crosses over from a power law to an expo-
nential law when increasing the applied load. This last
result is supported by the observation of the scaling
c ∼ F1=2. The relation of force and deformation for the
present contact geometry with purely elastic cylinders has
the form [30]

δ1 ¼
1 − ν2

πE
f
L

�
ln

�
4πERL
ð1 − ν2Þf

�
− 1

�
;

where δ1 is the compressed distance due to a single contact,
ν corresponds to the Poisson’s ratio (typically ν≃ 0.4 for
polymeric materials [35]), and R correspond to cylinder
radius. This equation can be written in an adimensional
form by defining ~f ¼ fð1 − ν2Þ=ð4πERLÞ and ~δ ¼ δ1=
ð4RÞ. So, if we perform a Taylor expansion of this relation
around an imposed force f0, the resulting expansion can
be written as

~δ ¼ −½ ~f0 þ 2~f0 ln ~f0� − ð3þ ln ~f0Þϵþ ~f0 lnð ~f0 þ ϵÞ;
ð2Þ

where ϵ ¼ ~f − ~f0 (see the Supplemental Material [28]).
Equation (2) shows two different regimes: for low applied
forces f0, the term ð3þ ln ~f0Þ ~f dominates and that would
correspond to a linear behavior for cylinders f ∼ δ (how-
ever, this is true only for extremely low forces and can be
approximated as a power law at larger ones, Supplemental
Material [28]), whereas for larger f0, the term ~f0 ln ~f
dominates and that would correspond to an exponential
law f ∼ eδ. The two regimes are separated by a crossover fc
given by the weight of the prefactors fc ¼ e−44πERL=ð1 −
ν2Þ (Supplemental Material [28]). Even though fc does not
match perfectly with the experimental results, Eq. (2) gives
an explanation for the observation of an exponential regime
with purely elastic considerations. We believe this discrep-
ancy in fc lies in the inherent viscoelasticity of polymeric
materials and in a finite length of the cylinders. We also
would like to point out that Eq. (2) is derived from a model
defined for small deformation. However, the behavior of
the force-deformation relation given by the model for a
range of forces ðδ=RÞ > 0.1 predicts an exponential law,
which is qualitatively what is observed in our experimental
results (Supplemental Material [28]). Smaller values in δ=R
may be a reason why the transition was not observed in
Ref. [22]. This transition may correspond to the global
mechanical response that changes the force-deformation
relation from a power law to an exponential one in a smooth
contact between cylinders. The exponent value 1.5 in the
force-deformation relation may correspond to the local
effect of spherical-like asperities, which can play a role for

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

F (N)

N

2 C
3 C
4 C
N/N

max

FIG. 5 (color online). Fraction of grains with 2, 3, or 4 contacts
in the experiment carried out with D configuration (same as
Fig. 3). The vertical dashed line marks the crossover between the
two power-law regions observed in Fig. 3. The total number of
contacts normalized by its value at the highest force shows a
continuous trend without any abrupt change of behavior at 80 N.
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deformations up to 50 times the amplitude of the roughness
[22]. However, this effect does not seem to affect the
transition to an exponential behavior, which may corre-
spond to a global deformation of the grain and is reached
before a change in the exponent value found in Ref. [22]
and linked to the roughness of the grains.
To sum up, we have performed an experiment with

photoelastic disks where by analyzing the ballistic part of
an acoustic signal generated in the system, we are able to
get information about the average coordination number of
the grains involved in the acoustic path. This information is
contained in the exponent of the speed-force relation, being
α≃ 0.5 for 2 contacts and α≃ 0.16 for 4 contacts. The
quotient cv=ch brings information about the anisotropy of
the system.With this information, it is possible to reveal the
structure of the granular packing in a neighborhood of a
line between the source of the acoustic signal and the
sensor. We have also shown that this speed-force relation is
a consequence of the force-deformation relation of single
grains. Being able to get information about the internal
structure of a compressed granular medium with acoustic
measurements is of great practical interest. Stability analy-
sis based on the contact topology of the grains [36],
avalanche prediction, and simplified models of earthquakes
are a few examples.
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