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We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging
kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both
linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode
morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high
potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and
Bazant. We identify surface conduction as a mechanism which can effectively “short circuit” the high-
resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power
densities. Notably, the boost in power density holds only for electrode morphologies with continuous
conducting surfaces in the charging direction.
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Porous electrodes play a central role in various electro-
chemical devices and technologies, including electrocata-
lysts [1], batteries [2], fuel cells [3], supercapacitors [4–6], as
well as in emerging technologies like capacitive deionization
(CDI) [7–10], and “blue” energy harvesting through capaci-
tive mixing of fresh and salt water (CAPMIX) [11–13]. The
large surface area per unit volume (or mass) inherent to
porous electrodes relative to planar electrodes enhances the
rates and magnitude of currents and capacitance that can be
achieved. This large surface area, however, is only effective
if electrolyte transport occurs quickly enough that all pores
are accessible in the relevant time.
The classic “Transmission-Line” (TL) model of de Levie

[14], described below, continues to see widespread use
in predicting ion transport in porous electrodes. The TL
model, however, is built upon linearized electrolyte theories
that omit crucial physics at the ∼100 mV–1 V potentials
relevant for most technologies. A more advanced model,
developed by Biesheuvel and Bazant (BB) [15], reveals ion
transport to be slowed significantly at the higher potentials
relevant for porous electrode processes, reducing the
achievable power densities.
Testing thevalidityof eitherof these twomodels, however,

would require the full numerical solution of the nonlinear,
coupled Poisson-Nernst-Planck (PNP) equations, generally
in complex, three-dimensional geometries. Very few direct
numerical simulations (DNS) have been performed to study
the charging kinetics of porous electrodes, with exceptions
limited to low potentials or simple geometries.
Here, we use powerful computational algorithms that

we have developed to enable DNS studies of the nonlinear
PNP equations, fully resolving transient electric double

layers under strong potentials in complex geometries. We
directly test both linear (TL) and nonlinear (BB) trans-
mission-line models against the full ion transport dynamics.
Curiously, our studies reveal systems whose charging times
are underpredicted by TL, yet overpredicted by BB, even
by orders of magnitude. Our DNS results reveal surface
conduction (SC), not included in either model, to play the
key role in accelerating the charging. We derive a new
effective transmission-line model (SC) that incorporates
surface conduction and captures the DNS results quanti-
tatively. Significantly, the SC mechanism depends strongly
on electrode morphology, unlike previous effective theo-
ries, giving an important new quantity to target in the
design of high-performance electrochemical systems.
We consider a model supercapacitor [Fig. 1(a)], which

stores energy within the electric double layers (EDLs) that
form around charged electrodes. The characteristic EDL
thicknesswithin symmetric,monovalent, binary electrolytes
is given by λD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkBT=2n∞e2

p
[16], wherein n∞ and e are

the ions’ number density and elementary charge, ε is the
electrolyte permittivity, and kBT is the thermal energy.
At applied potentials lower than the thermal potential

ϕth ¼ kBT=e; ð1Þ
EDLs act like linear, parallel plate capacitors, with specific
capacitance (per unit area)cEDL ¼ ε=λD [16].Unlikeparallel
plate capacitors, however, EDLs form conformally over
nonplanar electrodes. Therefore, combining the high surface
area of porous electrodes (∼1000 m2=g [5]) with the high
capacitance per unit area (∼10 μF=cm2 [4]) of the EDL,
yields ultrahigh capacitance per mass. Furthermore, the
absenceofchemicalreactionsgivesfasterchargeordischarge
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rates when compared to batteries, for high power density
energy storage [4].Decreasingpore size increases the surface
area—and, thus, specific capacitance—of the electrodes, but
at theexpenseof increased ion transport resistance (and, thus,
lower power density).
To model the charging dynamics of porous electrodes, we

first consider a singleporeofperimeterpp, crosssectional area
Ap, and axis x̂whosewalls have been raised to a potential ϕe
relative to the bulk electrolyte [Fig. 1(b)]. Counterions are
driven into the pore (and co-ions out) to form EDLs when
they encounter unscreened electrode surfaces.We assume the
effective (hydraulic) radius of the pore,

hp ¼ Ap=pp; ð2Þ
to be large relative to the EDL (hp ≫ λD), so that most of the
pore is electroneutral. The TLmodel treats electrode charging
in the long-wavelength limit, where variations in electric field
E occur over length scales much longer than hp, so that
E ≈ −ϕxðxÞx̂. This field drives a current I ¼ −σϕxðxÞApx̂
along the pore, where σ ¼ 2n∞e2D=kBT with ion diffusivity
D. Locally charging the EDL consumes some of this current,
and conservation requires ∂q=∂t ¼ −∂I=∂x. Assuming
constant conductivity σ and linear EDL capacitance qðxÞ ¼
cEDLppðϕðxÞ − ϕeÞ gives the TL equation,

∂ϕ
∂t ¼

�
hp
λD

�
D
∂2ϕ

∂x2 : ð3Þ

The EDL charging front thus propagates diffusively along the
pore, with a charging time scale

τTL ¼ λD
hp

L2

D
; ð4Þ

for a pore of length L.

While the TL model has been used to interpret experi-
ments [17] and optimize electrode morphologies [18], its
assumptions of low potentials and thin EDLs (Δϕ ≪ ϕth
and λD=hp ≪ 1) are often violated in practice [5]. Newman
and Tiedemann [2] extended the TL model to include
morphological effects via volume-averaging methods and
an effective pore radius hp. The BB model [15] predicts
high-potential charging kinetics to be slowed dramatically
due to (i) nonlinear EDL capacitance cEDLðΔϕÞ [19] and
(ii) salt depletion in the pores, which decreases the local
electrolyte conductivity.
Both TL and BB models approximate the Poisson-

Nernst-Planck (PNP) equations for dilute ion transport,

∂n�
∂t ¼ D∇2n� � μe∇ · ðn�∇ϕÞ; ð5Þ

−∇2ϕ ¼ eðnþ − n−Þ
ε

; ð6Þ
where μ ¼ D=kBT is ion mobility and n� are the ion
number densities [16]. Direct tests of the TL and BB
models require numerical solutions of the full PNP equa-
tions, which becomes challenging at high potentials due to
the extremely sharp gradients within thin EDLs. The TL
model has been validated with the linearized PNP equations
for straight pores [20], whereas nonlinear PNP studies
of charging kinetics [21] were limited to low electrode
potentials.
We have developed a powerful computational algorithm

[22] to solve the fully nonlinear PNP equations, by
employing Quadtree adaptive grids [23] to resolve strong
gradients at reasonable computational cost. Using DNS, we
study the effects of applied potential and pore morphology
on the charging dynamics of porous electrodes, focusing on
thin EDLs in order to directly test the TL and BB models.
As a comparison metric, we define the charging fraction,

ηðtÞ ¼ 1

q∞

Z
pore

½nþðt;xÞ − n−ðt;xÞ�dA; ð7Þ

which expresses the charge qðtÞ driven into the electrode
as a fraction of the steady-state charge q∞ that develops at
a given potential [24]. The (linearized) TL can be solved
exactly to yield ηðtÞ ¼ 1 −

P∞
n¼0 2λ

−2
n expð−λ2nt=τTLÞ,

where λn ¼ nπ þ π=2.
Figure 2(b) shows the charging dynamics ηðtÞ computed

for three pore morphologies [Fig. 2(a)] at low applied
potentials (Δϕ ¼ 0.1ϕth). When scaled by the naive ion
diffusion time L2=D, these appear to depend on electrode
morphology. Properly scaling time by τTL [Eq. (4)], how-
ever, collapses all computations onto the TL prediction,
illustrating the TL’s quantitative validity for general mor-
phologies at low potentials.
We now examine higher applied potentials, where the TL

is expected to fail. Figure 3(a) reveals charging dynamics
for a straight-walled pore atΔϕ ¼ 3, 5, and 7.5 ϕth to be up
to an order of magnitude slower than TL predictions. Such

(a)

(b) (c)

FIG. 1. (a) Macroscopic porous electrodes derive high surface
area from the many small pores they contain. The TL model
assumes EDL thickness λD to be thin compared to the pore size
hp. (b) The charging current drives ions along the pore, some of
which are diverted to unscreened electrode sections to form
EDLs. Ion conservation gives the TL equation, Eq. (3). (c) The
equivalent TL circuit uses linear resistors and capacitors to
represent the bulk electrolyte and EDL, respectively.
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slowing is predicted by the BB model, which accounts for
both nonlinear EDL capacitance and salt depletion of the
pore. Curiously, however, the BB model dramatically
overpredicts the slowing [Fig. 3(b)].
Detailed DNS results for the charging current (Fig. 4)

reveal a strong current within the highly charged EDLs.
Such excess surface currents, for example, are known to
cause nonmonotonic mobilities in electrophoresis [25].
This surface conduction [16] provides an additional charg-
ing pathway [Fig. 3(c)] that enters the effective circuit
diagram as a nonlinear resistor in parallel with the bulk
resistor [Fig. 3(d)]. Notably, the resistance associated with
the surface current is reduced as Δϕ is increased [16], and
ultimately “short circuits” the low-conductance bulk pores
to decrease the charging time.
The BB model can be extended to include surface

conduction for simple, straight-wall pores as in Fig. 3.
The BB model assumes an electroneutral, volume-averaged
bulk, and enforces conservation of charge and salt [15]:

∂
∂x

�
n
∂ϕ
∂x

�
¼ ϵi; ð8Þ

∂n
∂t ¼

∂2n
∂x2 − ϵj; ð9Þ

where nðt; xÞ and ϕðt; xÞ are area-averaged salt density and
electric potential, i and j are the current and salt fluxes into

the EDL, and ϵ ¼ λD=hp. We now extend the BB model by
including the surface currents in the conservation equations
for the EDL,

∂q
∂t ¼

∂2q
∂x2 þ

∂
∂x

�
w
∂ϕ
∂x

�
þ i; ð10Þ

∂w
∂t ¼ ∂2w

∂x2 þ
∂
∂x

�
q
∂ϕ
∂x

�
þ j; ð11Þ

(a)

(b) (c)

FIG. 2. The computed charging fraction [Eq. (7)] of three
model electrodes at Δϕ ¼ 0.1ϕth. (a) The potential front at three
different times looks remarkably similar for three different
electrode morphologies. (b) Naively scaling time yields an
apparent dependence on electrode morphology. (c) Scaling time
by the TL time scale [Eq. (4)] collapses all results onto the TL
curve, confirming its validity at low potentials.
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(c) (d)

FIG. 3. (a) The charging dynamics computed via DNS for a
single straight pore at high potentials are slowed dramatically
relative to the TL predictions. (b) Charging time at Δϕ ¼ 7.5ϕth
is underpredicted by TL, but overpredicted by BB. The SC model
[Eqs. (12)–(13)], which accounts for excess surface conduction
within the EDL, quantitatively captures the charging dynamics.
(c) The high conductivity of EDLs at high potentials gives rise to
an excess (surface) current. (d) Surface conduction adds a
nonlinear resistor rEDL in parallel to that of the bulk pore rB,
which effectively short circuits the high-resistance bulk pores at
high potentials to lower the charging time.

(a) (b) (c)

FIG. 4. Axial current densities computed for Δϕ ¼ 7.5ϕth in
the middle of a single straight pore. (a) The total current in the
bulk (0 < y=λD < 9) rises and falls as the charging front passes.
Within the EDL (9 < y=λD < 10), the (b) diffusive and (c) Ohmic
current densities also rise and fall, but are 2–3 orders of
magnitude stronger, revealing the importance of surface con-
duction at high potentials.
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where q ¼ qðn;ϕÞ ¼ 2
ffiffiffi
n

p
sinh½ðϕ − ϕeÞ=2� and w ¼

wðn;ϕÞ ¼ 4
ffiffiffi
n

p
sinh2½ðϕ − ϕeÞ=4� are the excess charge

and salt densities in the EDL [15,26]. Eliminating i and
j in Eqs. (8)–(11) gives the governing equations for the
SC model:

ϵ
∂q
∂t ¼

∂
∂x

�
ðnþ ϵwÞ ∂ϕ∂x

�
þ ϵ

∂2q
∂x2 ; ð12Þ

∂ðnþ ϵwÞ
∂t ¼ ∂2ðnþ ϵwÞ

∂x2 þ ϵ
∂
∂x

�
q
∂ϕ
∂x

�
: ð13Þ

The total conductivity (nþ ϵw) includes contributions from
the bulk (n) and the excess surface conductivity (ϵw),
which becomes large at high potentials. The SC model
quantitatively predicts the full DNS results [Fig. 3(b)], and
reveals that surface currents enhance the power density of
porous electrodes.
Toeffectivelyenhancechargingkinetics,however, surface

conduction requires continuous conducting pathways in the
charging direction to short circuit the high-resistance bulk.
Whether such paths exist depends on the electrodemorphol-
ogy: surface conduction ismuch less effective in accelerating
the charging of electrodes whose surfaces have discontinu-
ities in the charging direction. Figure 5 shows computed
charging dynamics for a “patchy” electrode,with chargeable
segments held at a fixed potential [Fig. 5(a)] separated by
uncharged segments. These uncharged segments break up
the continuous conducting pathways along the charging
direction, and render surface conduction ineffective in short
circuiting thehigh-resistancebulk. In this case, theBBmodel
captures the charging dynamics quantitatively. Straight
(continuous) pores are accurately described by the SCmodel
for multiple potentials, whereas patchy electrodes obey the
slower BB charging kinetics [Fig. 5(d)].
To summarize, our direct numerical simulation (DNS) of

the Poisson-Nernst-Planck (PNP) equations have shown
the classic Transmission Line (TL) model [14] to be
effective in predicting the charging dynamics of electrodes
with various morphologies, but only for low potentials. At
higher potentials, charging dynamics are slowed dramati-
cally due to the nonlinear capacitance of the EDL, as well
as salt depletion of the pores. The BB model [15], which
accounts for these nonlinear effects, overpredicts the
charging time of electrodes with continuous conducting
pathways along the charging direction. We have identified
surface conductivity within the EDL as the mechanism
responsible for “short circuiting” the high-resistance bulk,
and shown that the BB approach, modified to include
surface conduction, captures the charging dynamics quan-
titatively. Surface conduction cannot accelerate the charg-
ing dynamics of electrodes whose surface morphologies
have breaks in the charging direction (e.g., the patchy
electrode of Fig. 5), in which case the BB model captures
the dynamics.

While electrode morphology has generally been
regarded as irrelevant for charging dynamics, our results
suggest an unanticipated boost in charging rates for
electrodes with appropriate morphologies. One might
expect conventional electrodes derived from activated
carbon to contain sections that are “dead ends” from a
surface conduction standpoint, in which case the slowed
(BB) kinetics should hold. Electrodes derived from carbon
nanotube forests [27], graphene sheets [28], or hierarchi-
cally designed mesoporous carbons [5], on the other hand,
naturally introduce the continuous surfaces required for SC
“short circuits”, and may, thus, boost power densities.
We close by reflecting on the applicability of the PNP

equations and the circuit models used in this study. First,
the TL, BB, and SC models all assume the EDL to be
locally thin compared to the pore radius which is often
violated in micropores (radius < 2 nm). Moreover, experi-
ments suggest that EDL capacitance increases in micro-
pores [5], perhaps due to ion-image charge interactions
[29]. A modified Donnan (mD) model has recently been
developed for micropores, which assumes strongly over-
lapping EDLs and ion-electrode image charge interactions
[30–32], which has successfully described several CDI and
CAPMIX experiments [9,12,33–35] in activated carbon
electrodes. The results presented here will nonetheless

(a) (b)

FIG. 5. Charging kinetics of a patchy pore at Δϕ ¼ 7.5ϕth.
(a) A schematic of the patchy pore model in which only selected
parts of the electrode surface may charge. (b) The patchy
electrode’s effective circuit introduces gaps in the low-resistance
pathways introduced by surface conductivity, removing the
“short circuit” that arose with straight pores [Fig. 3(d)].
(c) The lack of a continuous conducting paths in the charging
direction renders surface conduction unable to short circuit the
high-resistance bulk. Omitting surface conduction recovers the
original BB model, which captures the charging kinetics quanti-
tatively. (d) Charging kinetics are slowed at high applied
potentials, accurately described for straight pores by the SC
model and for patchy pores by the BB model. The charging time
is defined as that required for 99% charging [ηðtÞ ¼ 0.99].
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describe charging dynamics in meso- (radius ∼ 5–20 nm)
or macropores. The two approaches are complimentary,
treating different charging processes within different
pore sizes, and it would be interesting to develop a hybrid
PNP-mD scheme that blends these two approaches.
Second, the PNP equations are valid for dilute electro-

lytes in the mean-field limit, assumptions that are almost
certainly violated at the high potentials of most applications
or for ionic liquid electrolytes [36]. At such high potentials,
the PNP equations predict unphysically high ion concen-
trations in the EDL [37], remedies for which have been
proposed via steric repulsions between ions [37–39]. Given
that the magnitude of the excess surface current varies with
the ion concentration, any reduction in the EDL capaci-
tance (e.g., due to steric repulsions [38] or Stern layers
[30,31]) will reduce the effect of surface conductivity. Such
reductions affect the SC model as well as the BB model.
Irrespective of the quantitative magnitude of the surface
conductivity, however, the mechanism we have presented
here—wherein excess surface conductivity short circuits
the electrode charging dynamics, boosting power densitiy
—remains robust, even when steric or other effects reduce
the magnitude.
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