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Thermally driven domain wall (DW) motion caused solely by magnonic spin currents was forecast
theoretically and has been measured recently in a magnetic insulator using magneto-optical Kerr effect
microscopy. We present an analytical calculation of the DW velocity as well as the Walker breakdown
within the framework of the Landau Lifshitz Bloch equation of motion. The temperature gradient leads to a
torque term acting on the magnetization where the DW is mainly driven by the temperature dependence of
the exchange stiffness, or—in a more general picture—by the maximization of entropy. The existence of
this entropic torque term does not rest on the angular momentum transfer from the magnonic spin current.
Hence, even DWs in antiferromagnets or compensated ferrimagnets should move accordingly. We further
argue that the entropic torque exceeds that of the magnonic spin current.
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Spin caloritronics is a new field of research focused
on the combined transport of spin, charge, entropy, and
energy in magnetic systems [1]. A good example for a spin
caloritronic phenomenon is the spin Seebeck effect, the
occurrence of spin currents or spin accumulation due to
temperature gradients, which was discovered first in
metallic ferromagnets [2]. Later on, this effect was also
found in dilute magnetic semiconductors [3] and even in
insulators [4]. In the latter case the existence of the spin
Seebeck effect can only be explained by pure magnonic
spin currents not resting on any charge transport.
Spin caloritronic phenomena call for an exploitation in

magnetic devices. In Ref. [5] the existence of thermally
driven domain wall (DW) motion in a temperature gradient
was demonstrated by computer simulations based either on
the stochastic Landau-Lifshitz-Gilbert equation of motion
for an atomistic spin model or—in a more micromagnetic
picture—on the Landau-Lifshitz-Bloch (LLB) equation of
motion for a thermally averaged spin polarization. The
microscopic explanation for DW motion in temperature
gradients rests on the diffusive motion of magnons from
the hot end of a nanowire towards the colder end [6] and the
transfer of angular momentum pushing the wall in the
direction opposite to the magnonic spin current. Theoretical
investigations based on these arguments give estimates for
the DW velocity which can be achieved [7–10].
In this work we will focus on a more thermodynamic

point of view. At finite temperature T a DW is a thermo-
dynamic object where the free energy ΔFðTÞ is the
thermodynamic potential that is minimized. The free
energy of the DW can be expressed as the difference
between a magnetic system with DWminus the free energy
of the same system without DW [11]. It is connected to
the internal energy ΔU of the wall and its entropy ΔS via
ΔF ¼ ΔU − TΔS. The temperature dependence of the
different thermodynamic potentials are illustrated in

Fig. 1 for a DW in a high anisotropic material. The
calculations are from Ref. [11] for an atomistic spin model
for FePt. However, the general features of a DW free energy
do not depend on the material under investigation. While
the internal energyΔU increases, the free energy of the DW
is a monotonically decaying function of temperature. This
is due to the fact that the entropy of the DW increases with
temperature due to the increasing spin disorder following
the thermal excitation. Note that the maximum of ΔS and
ΔU is slightly below the Curie temperature TC, where the
DW becomes linear [11–13]. The increase of the entropy
ΔSðTÞ of the wall and the decrease of the free energy
ΔFðTÞ with temperature alone must lead to DW motion in
a temperature gradient, as long as the temperature gradient
is sufficiently small so that equilibrium thermodynamics
can be applied. To minimize its free energy, the DW must
move towards regions with higher temperatures. In the
following we will calculate DW motion analytically based
on these thermodynamic arguments within the framework

FIG. 1 (color online). Temperature dependence of different
thermodynamic potentials of a DW in a high anisotropic material
[11]. The increase of the entropy ΔS leads to a monotonically
decaying free energy ΔFðTÞ as a function of temperature.
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of the LLB equation. We show that the strong decay of the
exchange stiffness plays the main role in minimizing the
free energy and thereby pushing the DW into the hotter
region. In order to verify our analytical approach for the
velocity of the DW as well as the Walker threshold we
also present numerical simulations. Interestingly, the above
argument does not rest on the existence of magnonic spin
currents with angular momentum transfer so that it should
apply more generally, e.g., to antiferromagnets or ferri-
magnets at the compensation point as well. Finally, we
compare our results with those resting on magnonic spin
transfer torque showing that the entropy driven DWmotion
exceeds the magnon driven one [7–10].
A framework for thermal micromagnetic calculations was

recently developed [14] and is meanwhile well established in
the context of ultrafast spin dynamics [15,16], spin torque
[17,18], vortex core reversal [19], and spin caloritronics [5].
It rests on the LLB equation of motion which was derived
earlier by Garanin [20] to describe the dynamics of a
thermally averaged reduced magnetization vector mi via
the Fokker-Planck equation. The LLB equation does not
conserve the length of the magnetization vector, it rather
allows for longitudinal fluctuations of the magnetization in
space and time and all relevant magnetic material parameters
such as exchange stiffness, anisotropy, and equilibrium
magnetization become functions of temperature that are
well defined in terms of their microscopic degrees of
freedom. The LLB equation reads

_mi ¼ −γmi ×Hi
eff þ

γαjj
m2

i
ðmi ·Hi

effÞmi

−
γα⊥
m2

i
mi × ðmi ×Hi

effÞ: ð1Þ

Besides the usual precession and relaxation terms of the
Landau-Lifshitz-Gilbert equation, the LLB equation con-
tains another term which controls longitudinal relaxation.
For T ≤ TC the temperature dependent longitudinal and
transverse damping parameters α∥ and α⊥ are connected to
the atomistic damping parameter λ via α∥ ¼ λ2T=ð3TCÞ
and α⊥¼ λ½1−T=ð3TCÞ�. The effective fieldsHeff are given
by [14]
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Here, the first term represents the anisotropy field which
makes the z axis the easy axis of the model and k < 1 is a
factor which breaks the x − y symmetry so that x is the
intermediate and y the hard axis of the model. The second
term is the exchange field whereMs is the zero-temperature
saturation magnetization and Δ is the cell size of the mesh.

Within the framework of the LLB equation the temper-
ature dependence of the effective fields is defined via
thermodynamic equilibrium functions, namely, the
reduced equilibrium magnetization meðTÞ, the exchange
stiffness AðTÞ, and the susceptibilities ~χ∥ðTÞ and ~χ⊥ðTÞ,
which have been calculated in [14] for FePt based on
atomistic spin model simulations. For the current work we
rescaled these functions to match the material properties
of a CoPd multilayer system [21,22]. These functions are
shown in Fig. 2. The corresponding zero-temperature
material parameters are a saturation magnetization of
Ms ¼ 8.2 × 105 A=m, an anisotropy constant K0 ¼
6 × 105 J=m3, and an exchange stiffness Að0Þ ¼
2.3 × 10−11 J=m, where we have used the relation
~χ⊥ð0Þ ¼ M2

sμ0=ð2K0Þ. Even though details [e.g., the expo-
nents κ and ϵ describing AðTÞ ∝ mκ

e and KðTÞ ∝ mϵ
e] do

depend on structural and material details [23], the func-
tional forms are rather general for any ferromagnetic
system. In the following we model a nanowire. Along
the long axis (z) we apply a constant temperature gradient
and fixed antiparallel boundary conditions forcing a DW
into the system. Analytically, we will treat the model in the
one-dimensional limit. In our accompanying simulations
the model has a size of 8 nm × 8 nm × 512 nm discretized
with a cell size of 1 nm. The DW is initially in the center
of the wire with a temperature of 300 K (see Fig. 3). All
numerical methods based on solving Eq. (1) for each cell
are similar to Ref. [5].
As argued above, in a temperature gradient the DW

moves towards increasing temperatures. Figure 3 shows
that though the general shape of the wall remains constant,
its amplitude decreases due to the fact that the equilibrium
magnetization itself is temperature dependent. While for
lower temperature gradients after an acceleration phase
the DW is restricted to a constant plane (as shown in
Fig. 3) for larger thermal gradients, the motion of the DW is
accompanied by precession (not shown). This effect is the
so-called Walker breakdown, well known from DWmotion
by applied fields or spin-polarized currents [17,24] and

FIG. 2 (color online). Temperature dependence of the material
parameters of the LLB equation.
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already discussed in Ref. [5] for thermally driven DW
motion. In the following we discuss an analytical solution
of the DW velocity as well as the Walker threshold derived
within the framework of the LLB equation. Details of the
calculation are explained in the Supplemental Material
[25]. Considering a 1D model with a thermal gradient as
well as an external field in the z direction, the calculations
lead to the following equations of motion for the out of
plane angle,

_ϕ ¼ γ

�
Hz −

2

Msmeδ

∂A
∂z −

α⊥ð1 − kÞ sinð2ϕÞ
2~χ⊥

�
; ð3Þ

and for the velocity of the DW,

vD ¼ γ

α⊥Ms

�
1þ α2⊥

m2
e

��
δMsmeHz − 2

∂A
∂z

�
−
δme

α⊥
_ϕ:

ð4Þ

Here we have assumed a constant transverse domain
wall profile during the movement with the temperature-
dependent domain wall width δ [see Eq. (7) in [25]] and
neglected dynamic deviations of the local magnetization
mðzÞ from its equilibrium value meðzÞ. Concerning the
external field contribution to the DW velocity below the
Walker breakdown, we note that in the low-temperature
limit T → 0 our result agrees with Eq. (28) of the original
evaluation by Landau and Lifshitz [26]. From our main
results [Eq. (4)] we find that the temperature gradient
creates an effective fieldHtherm that acts on the DW, similar
to the applied magnetic field. By comparing these two
contributions we find a field equivalent given by

Htherm ¼ −
2

δmeMs

∂A
∂T

∂T
∂z : ð5Þ

Another interesting analogy is to the case of DW motion
by spin transfer torque, where two additional torque
terms, an adiabatic and nonadiabatic one, are added to
the equation of motion. Comparing the resulting velocity
formulas [Eq. (16) in Ref. [17] to Eq. (4)] below the Walker
breakdown one can define the effective spin current
equivalent,

βuz ¼
βμBjeP0

eMs
¼ −

2γ

Msme

�
1þ α2⊥

m2
e

� ∂A
∂T

∂T
∂z : ð6Þ

Here β, μB, je, e, and P0 represent the nonadiabaticity
factor, the Bohr magneton, the electrical current density,
the charge of the electron, as well as the spin polarization
of the electrical current.
From now on we focus solely on thermally driven DW

motion without external fields. The corresponding Walker
threshold ~Aw ¼ ∂Aw=∂z for that case is calculated by
assuming _ϕ ¼ 0 and ϕ ¼ π=4 in Eq. (3). The Walker
threshold is then given by

~Aw ¼ −
meMsα⊥δwð1 − kÞ

4~χ⊥
; ð7Þ

with the corresponding DW width δw ¼ δðϕ ¼ π=4Þ.
For the average velocity of the DW, we obtain then

vD ¼ −
2γ

Msα⊥
∂A
∂z

�
1þ α2⊥
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e

�

−
γδwmeð1 − kÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂A=∂z
~Aw

�
2

− 1

s
; ð8Þ

where the second square-root contribution representing
ðδme=α⊥Þ _ϕ occurs only above the Walker threshold.
In Fig. 4 the resulting DW velocities versus strength of

the temperature gradient are plotted for different damping
constants and anisotropy ratios k. Equation (8) is compared
to our corresponding numerical simulations. In general we
obtain a good agreement in all cases including the correct
calculation of the Walker breakdown. The fact that the
numerical results are slightly higher below and smaller
above the Walker breakdown as compared to the analytical
ones is due to an additional driving force caused by
mðzÞ ≠ meðzÞ, which has been neglected in the analytical
model [25].
Because of the temperature dependence of ~χ⊥, α⊥, me, δ

as well ~Aw in Eq. (8) the velocity of the DW does not
remain constant during the movement along the temper-
ature gradient. For comparison to the numerical results in
Fig. 4, as input to these quantities, we therefore have used

T
[K

]

350

300

250

(a)

(b)

mz

my

mx

< t3< t2t1

position z

m
ag

ne
ti
za

ti
on

M
/M

s

5004003002000 001

1

0.5

0

-0.5

-1

FIG. 3 (color online). DW motion in a thermal gradient.
(a) Temperature gradient and (b) snapshots of the DW profile
at different times.
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the temperature at half of the covered distance. We illustrate
the effect of the temperature variation in Fig. 5, where the
temperature dependence of the DW velocity (λ ¼ 0.02,
k ¼ 0.8) for different strengths of the thermal gradient is
plotted together with the maximal possible velocity reached
directly at the Walker breakdown

vmax ¼
γmeδwð1 − kÞ

2~χ⊥

�
1þ α2⊥

m2
e

�
: ð9Þ

Mainly caused by the increase of dA=dT with increasing
temperature, the velocity of the DW is monotonically
increasing below the Walker breakdown and decreasing
above it. Since the Walker-breakdown itself is decreasing
with temperature, dependent on the strength of the gradient,
at a certain temperature the moving wall always starts to
precess. For the realistic assumption of low damping,
α2 ≪ 1, the maximum DW velocity [Eq. (9)] remains
proportional to the difference between the hard and
intermediate axis ð1 − kÞ, but becomes independent of
the damping α as well as of the derivative of the exchange
stiffness ∂A=∂T (see Fig. 4). Combining thermal gradients
with external fields leads to higher velocities, but no change
of the maximum DW velocity at the Walker breakdown.
Note that we avoid the critical region in Fig. 5 since close to
TC the wall becomes linear (see Fig. 1 and Refs. [11–13])
and the approximations made in the analytical model are no
longer valid.
For a simpler analytical estimation of DW velocities

that can be expected below the Walker breakdown, it is
reasonable to linearize the temperature dependence of the
exchange stiffness as ðdA=dTÞ ≈ Að0Þ=TC and approxi-
mate α2 ≪ 1 for low damping to obtain

vD ¼ −
2γ

Ms

1

α⊥
Að0Þ
TC

∂T
∂z : ð10Þ

In Refs. [9,10] the DW velocity in this regime has been
calculated from a microscopic point of view, assuming

angular momentum transfer from the magnonic spin current
only. Including the assumption α ¼ β made by the authors,
Eq. (1) in Ref. [9] can be written as

~vD ¼ γkB
αMs6π

2λm

∂T
∂z : ð11Þ

Here, λm represents the wavelength of the thermally excited
magnons where the authors assume λ ≈ 6 nm. Comparing
Eq. (10) with Eq. (11) we note that both results agree in
the proportionality of the DW velocity to vD ∝ ð∂T=∂zÞ
ðγ=MsαÞ. Concerning the prefactors in Eq. (10), we assume
a cubic structure with Að0Þ ¼ J=2a, where a is the lattice
constant amd J the nearest-neighbor exchange constant
and use the mean-field approximation for TC ¼ 2J=kB. By
doing so we obtain the relation vD=~vD ¼ ð3π2λ=2aÞ ≫ 1.
Hence, the presented entropic torque drives the DW much
more than the magnonic effect discussed in Refs. [9,10]. As
an example, with the used YIG-material parameters [9,10]
and a gradient of 20 K=mm we obtain a DW velocity of
24:6 mm=s as compared to 1.3 mm=s. Based on a different
approach the authors in Ref. [27] also discuss the effect of
the maximization of entropy for DWmotion in temperature
gradients. In contrast to Eq. (10), in Ref. [27] there is no
analytical estimation of the DW velocity without computa-
tional effort possible. Using the same values for YIG and
∂T=∂z as discussed above, the authors in Ref. [27] obtain a
DW velocity of 7.0 mm=s.
To summarize, we presented a theory for DW motion

in a temperature gradient that considers thermodynamic
principles, mainly the maximization of entropy. Calculating
the DW velocity analytically we show that the effect of the
entropic torques should be larger than the angular momen-
tum transfer from the magnon current. Our argument is
rather general and not restricted to transverse domain walls
in ferromagnets. We expect similar entropic torques also
to act on other magnetic textures as, e.g., Skyrmions
[28,29] or vortex walls, and in other materials like anti-
ferromagnets, where the magnonic spin currents are

FIG. 4 (color online). Comparison between analytical (solid
lines) and numerical results (data points) for the velocities of the
DW for different damping constants and anisotropy ratios k.

FIG. 5 (color online). Temperature dependence of the DW
velocities for different strengths of the thermal gradient and of the
maximum DW velocity at the Walker breakdown.
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expected to vanish because of the two compensating
sublattices [30].
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