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Electrons in graphene aligned with hexagonal boron nitride are modeled by Dirac fermions in a
correlated random-mass landscape subject to a scalar- and vector-potential disorder. We find that the system
is insulating in the commensurate phase since the average mass deviates from zero. At the transition the
mean mass is vanishing and electronic conduction in a finite sample can be described by a critical
percolation along zero-mass lines. In this case graphene at the Dirac point is in a critical state with the
conductivity

ffiffiffi
3

p
e2=h. In the incommensurate phase the system behaves as a symplectic metal.
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Several years of intense development singled out the
hexagonal form of boron nitride (hBN) as a unique insulat-
ing substrate for graphene [1] (for a review, see Refs. [2,3]).
High values of electron mobility in graphene on hBN [1],
exceeding those in suspended samples at room temperature
[4], are now routinely achievable in a lab, paving the way to a
variety of high-quality graphene devices [2,3,5]. A number
of interesting discoveries, including, e.g., giant magnetodrag
[6] and nonlocal transport [7], have been made using
graphene/hBN samples. The mutual orientation of graphene
and hBN lattices in these high-mobility samples has been
entirely random.
More recently it became technologically possible to

control the orientation of the graphene lattice on the
hBN substrate [8]. This development has already led to
the discovery of “Hofstadter butterfly” physics [9–11] and
to the observation of insulating behavior in some highly
oriented samples [12].
It is understood both theoretically and experimentally that

graphene and hBN lattices do not fully match on the atomic
level even if their lattice orientations coincide. Instead, a
1.8% difference in lattice spacing between graphene and
hBN makes it energetically favorable to develop local lattice
distortions, which are seen as a moiré pattern with a period of
14 nm [12,13]. The periodic lattice distortions with smaller
periods are also observed in samples with a tiny orientation
angle ϕ≲ 1° between the graphene and hBN lattice [12].
These samples are in the commensurate phase. No essential
lattice reconstruction occurs in the incommensurate phase
for larger orientation angles.
In this Letter we focus on the metal-insulator phase

transition in graphene at charge neutrality, which can
accompany the incommensurate-commensurate phase tran-
sition in sufficiently clean samples. Insulating behavior has
been so far observed for a few samples doped to charge
neutrality in the commensurate phase [12]. We interpret the
observation as the result of the mean band gap opening in
graphene (mean mass), which is induced by the proximity
to the hBN. We also argue that the metal-insulator

crossover can be modeled in a finite system by classical
percolation of Dirac fermions in a long-range correlated
random mass landscape.
As far as the electronic properties are concerned we may

use the standard tight-binding model for graphene, assuming
that the major effect of proximity to the hBN is described by
external potentials VAðrÞ and VBðrÞ induced on graphene
sublatticesA andB. We further assume that lattice distortions
are smooth on atomic scales. It is, then, convenient to define
V0 ¼ ðVA þ VBÞ=2 and m ¼ ðVA − VBÞ=2, and describe
charge transport in graphene at zero temperature by the
effective Dirac Hamiltonian

H ¼ ℏvσ · ½pþ τzAðrÞ� þ σzτzmðrÞ þ VðrÞ; ð1Þ

where v ≈ 106 m=s is the Fermi velocity, the Pauli matrices
σ ¼ ðσx; σyÞ and σz act in the sublattice space, while the
Pauli matrix τz acts in the valley space (for a general
introduction to the Dirac fermion physics in graphene, see
Refs. [14,15]).
The strain induced in graphene is responsible for the

appearance of the vector-potential-like term A, and for the
contribution to the scalar potential Vs. The long-range
Coulomb impurities give another random contribution to
the scalar potential, V imp, so that V ¼ V0 þ Vs þ V imp.
Without loss of generality we assume that hVi ¼ 0, where
the brackets stay for the average over disorder. We study the
model (1) at zero chemical potential, which corresponds to
charge neutrality. The intervalley scattering, which can be
induced by pointlike impurities or other atomic defects, is
completely ignored in the model (1), since we restrict our
attention to high mobility samples.
A number of ab initio studies have been undertaken

recently to characterize the commensurate phase [13,16–19].
It has been established that the energetically favorable local
configuration corresponds to the placement of boron against
carbon and nitrogen against the void in the graphene lattice.
Such a configuration would be entirely stable on large scales
if the graphene and hBN lattices had an identical lattice

PRL 113, 096801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

29 AUGUST 2014

0031-9007=14=113(9)=096801(5) 096801-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.096801
http://dx.doi.org/10.1103/PhysRevLett.113.096801
http://dx.doi.org/10.1103/PhysRevLett.113.096801
http://dx.doi.org/10.1103/PhysRevLett.113.096801


spacing. In reality, the graphene lattice tends to be stretched
to become commensurable with that of hBN, but the energy
gained by bonding commensurability is insufficient to fully
offset the energy costs of stretching. The interplay of the two
mechanisms forms a complex lattice distortion, which
consists of the starched honeycomb areas of the graphene
lattice in the most favorable configuration (such that nitrogen
is opposite to the void), which are separated by the areas with
the second optimal configuration (nitrogen against carbon
and boron against the void). This picture is indeed supported
by local probe microscopy [12]. Recent atomistic simula-
tions [19] show that the experimentally observable distribu-
tion of atomic displacements can only be explained by
assuming that the C-N interaction is at least 2 times stronger
than the C-B one.
Thus, in the commensurate phase with a perfect lattice

alignment, ϕ ¼ 0°, a positive mass potential is induced
inside moiré hexagons due to the interaction with the boron
atom (the absolute choice of mass sign is irrelevant), while
on the boundary between the moiré hexagons the mass is
largely negative due to the interaction with the nitrogen
atom. The average value of the band gap, i.e., the mean
mass potential, can be measured, for instance, by the
magneto-optic response. Such measurements have indeed
confirmed the existence of a finite average mass in the
commensurate phase [20].
Theoretically, the mean square deviation Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hδm2i

p
in the commensurate phase has been predicted to vary from
Δ ∼ 10 meV toΔ ∼ 300 meV [13,16–18] and a finite value
of hmi in the commensurate phase has been found in
Ref. [18]. The enhancement of Δ due to electron-electron
interactions has been also discussed qualitatively in
Ref. [21]. We explain below that the appearance of a finite
mean mass is the main reason for the observed insulating
behavior in the commensurate phase.
With the increase of orientation angle ϕ the regular

pattern for the mass potential breaks down so that the mass
can be modeled by a long-range correlated disorder
potential with the correlation length ξ, the mean value
hmi, and the mean square deviation Δ. At some value of ϕ
of the order of 1°, the value hmi is close to zero, while the
amplitude Δ is still of the order of 10–50 meV. Deep in the
incommensurate phase, i.e., for ϕ ≫ 1°, the mass potential
becomes completely negligible.
The decisive role of the average mass hmi for conduction

is well documented for the model (1) with a short-range
correlated random mass potential [22–27]. Indeed, the
model with fully random V, A, and m belongs to the
quantum Hall symmetry class A [28]. At the Dirac point
such a system is known to have two insulating phases,
hmi > 0 and hmi < 0, separated by the quantum-Hall
critical state at hmi ¼ 0 as illustrated in Fig. 1(a). Zero-
temperature conductivity in the critical state flows to
σQHExx ∼ 0.57 × 4e2=h in the thermodynamic limit
[24,25,29,30].

If the amplitudes of V and A are negligible, the system
belongs to the class D, which is characterized by the phase
diagram depicted in Fig. 1(b). (The existence of the
thermal-metal phase in the model is, however, debated
[26].) The conductivity in this situation shows essentially
the same behavior as in the class A, except that its value at
criticality, hmi ¼ 0, is different: the conductivity flows to
σDxx ¼ 4e2=πh instead of σQHExx [23,25].
The correlations of mass potential cannot change the

behavior of the system in the limit of infinite system size.
Thus, the model (1) with any fluctuating V, A, and m is
subject to Anderson localization and gives rise to the
insulating phase at charge neutrality unless hmi ¼ 0.
Despite the mathematical rigor of the statement it might
be impossible to observe the expected insulating behavior
experimentally due to a finite system size or finite temper-
ature, i.e., in the situation that the localization length
becomes larger than either the system size or dephasing
length.
The high-quality graphene/hBN samples with controlled

lattice alignment are restricted in size to a few microns. It is
very likely, therefore, that the observed insulating behavior
originates in classical percolation. The existence of the
percolation regime requires that the fluctuations of the scalar
potential are suppressed,

ffiffiffiffiffiffiffiffiffi
hV2i

p
≪ Δ, while the correlation

length of the mass potential is sufficiently long, ξΔ=ℏv ≫ 1.
The conditions define the percolating network of topologi-
cally protected chiral channels, which are given by the lines
of zero mass.
The origin of the chiral channels can be understood from

the symmetry analysis. In the absence of a magnetic field,
the Hamiltonian (1) yields the physical time-reversal
symmetry: τyσyHTτyσy ¼ H. Since the Hamiltonian is
block diagonal we can, however, consider the valleys
separately. In each of the them we may introduce another

FIG. 1 (color online). (a) Flow diagram for the model (1) with
random V, A, and m (class A) [29]. Conductivity flows to
quantum Hall critical point σQHExx ≈ 0.57 × 4e2=h provided hmi ¼
0 and to zero otherwise [24,25,30]. (b) Phase diagram in the class
D (V, A ¼ 0). If Δ is smaller than a critical value, the
conductivity flows to σDxx ¼ 4e2=πh for hmi ¼ 0 and to zero
otherwise [23,25].
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time-reversion operation: H → σyHTσy. This time-reversal
symmetry is broken by any mass; hence, the mass term acts
as an effective magnetic field in the single-valley Dirac
Hamiltonian [31–34].
It is well known that the single-valley Hall conductivity

inside the gap reads σxy ¼ ð2e2=hÞsgnðmÞ=2 [22,24,25,34].
The integer quantum Hall phase transition at zero mass
corresponds to a jump in σxy of the size of the conductance
quantum. Thus, the zero-mass line can be viewed as the
boundary between insulators with Chern numbers different
by 1 and has to contain exactly one topologically protected
chiral channel [32,35,36]. The chiral electron propagates
along the boundary in one direction in one valley but in the
opposite direction in the other valley independent of the
potentials V and A [37]. Thus, the conductance of such a
chiral channel at the Dirac point equals 2e2=h, where the
factor 2 is due to the spin degeneracy.
The topological protection of the chiral mode can,

however, be destroyed either by intervalley scattering or
by tunneling into a neighboring zero-mass line in the same
valley, which propagates back into the incoming lead. The
former processes are negligible while the later ones are
suppressed in the limit ξΔ=ℏv ≫ 1 (provided

ffiffiffiffiffiffiffiffiffi
hV2i

p
≪ Δ).

It is worth noting that chiral states with zero energy are
absent in closed loops (vortices) because the periodic
boundary condition with the Berry phase π cannot be
fulfilled for the chiral states due to the absence of a dynamic
phase [26].
Let us now propose a simple percolation model to study

transport at charge neutrality in a correlated mass land-
scape. We consider bond percolation on an effective
honeycomb lattice. (The symmetry of the lattice is irrel-
evant since we consider a universal continuum limit of a
large system size.) Cells of an effective honeycomb lattice
with a period ξ are colored yellow with a probability p as
illustrated in Fig. 2. The boundary between yellow and
white regions corresponds to a line of zero mass. Each line
connecting the leads contributes the conductance quantum
2e2=h. Thus, the mean conductivity can be inferred from
the statistical analysis of boundaries of the classical
percolation cluster in Fig. 2 as

σ ¼ 2e2

h
LhNlinei

W
; ð2Þ

whereW and L are the width and the length of a rectangular
graphene sample, respectively, and hNlinei stands for the
average number of zero-mode lines connecting sample
edges at x ¼ 0 and x ¼ L (the leads). The conductivity (2)
must approach the actual 2D conductivity of the system in
the limit W ≫ L.
The percolation problem for a lattice of randomly

colored hexagons is very well studied. It is well known
that the probability of having an infinite cluster of the same
color hexagons is vanishing unless p ¼ 1=2 [38], which is

qualitatively identical to the behavior of the quantummodel
in the class A. The properties of critical percolation at
p ¼ 1=2, which corresponds to hmi ¼ 0, are universal in
the thermodynamic limit, i.e., do not depend on the
underlying lattice model.
A number of exact results for the critical percolation

have been obtained by means of the conformal field theory
[38–40]. More recently the stochastic approach known as the
Schramm-Loewner evolution (SLE) has been developed as a
mathematically rigorous alternative to tackle the problem
[41]. In this formulation a zero-mass line at the cluster
boundary is viewed as a random walk. The statistical
properties of such a walk at p ¼ 1=2 yield the stochastic
evolution in the class SLE6 [42–44]. For instance, it can be
rigorously proven that the line connecting the leads has a
fractal dimension 7=4, instead of 2 as for Brownian motion,
which means Lline ∝ LðL=ξÞ3=4 in the limit L ≫ ξ.
One of the seminal Cardy formulas [38] provides a

universal expression for the mean number of independent
percolation clusters hNci connecting two arbitrary arcs (see
also Ref. [45]). This number is determined by a single
parameter, which encodes the shape of the arcs. For
rectangular geometry in the limit W ≫ L the number of
percolating lines is 2 times larger than the number of clusters
in the leading order in W=L. In this case the Cardy formula
gives hNlinei ¼ 2hNci ¼

ffiffiffi
3

p
W=2L. We illustrate this result

with straightforward numerical simulations in Fig. 3 for a
sample with periodic boundary conditions in the y direction.
We also find that the distribution of the line lengths is

log-normal and

exp hlnðLline=LÞi ¼ cðL=ξ0Þ3=4; ξ0 ¼
ffiffiffi
3

p
ξ=2; ð3Þ

where c ≈ 0.7. Away from p ¼ 1=2, the average number of
lines between the leads forW ≫ L is very well fitted by the
Gaussian law

FIG. 2 (color online). Percolation model. Hexagons are colored
yellow with a probability p, and the boundary between white and
yellow hexagons corresponds to a zero-mass line that supports
two counterpropagating chiral edge states in different valleys.
Each line connecting the leads contributes a conductance of
2e2=h. The statistics of the zero-mass lines is described by the
Schramm-Loewner evolution.
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hNlinei ¼
ffiffiffi
3

p
W

2L
exp

�
−
ðp − 1=2Þ2

p2
0

�
; ð4Þ

where p0 ¼ cðξ0=LÞ3=4 with c ≈ 0.7 (see Fig. 3).
Critical percolation for p ¼ 1=2 corresponds to a system

with hmi ¼ 0; moreover, p − 1=2 ∝ hmi=Δ. The insulating
behavior observed in Ref. [12] can be explained by the
finite average mass, i.e., p ≠ 1=2. It might be difficult in an
experiment to ensure the conditions required for the
classical percolation regime, which explains the scarce
number of samples that demonstrate insulating behavior on
small scales [12].
A slight increase in orientation angle ϕ ∼ 1° makes the

mean mass negligible, while the amplitudeΔ remains large.
In this regime we can expect a critical state with p ¼ 1=2,
which is characterized by the conductivity σpercxx ¼ ffiffiffi

3
p

e2=h.
This value lies in between the conductivity fixed points for
the fully quantum models: σDxx and σQHExx . Fully misaligned
samples correspond to m ≪ V. In this case the system at
ε ¼ 0 has a tendency to flow towards the symplectic metal
due to the leading role of the scalar potential V [23,46].
The results of Eqs. (3) and (4) are equivalent to those

obtained in the classical percolation model of the quantum
Hall transition [47,48] and can be expected for a critical 2D
percolation on any lattice [38–40,42–44]. It is understood
that quantum tunneling always plays an important role at
large scales where a full quantum consideration is necessary.
In our case such tunneling is facilitated by a finite V and A
potentials, which drive our system in the thermodynamic
limit from the classical percolation regime [Eqs, (2) and (4)]
to the quantum Hall critical point. This limit may not be of
practical importance though, since the sample size in
commensurate phase is technologically restricted to a few
microns. The conditions are hard to fulfil in an experiment,
which explains why it is so difficult to observe insulating
behavior in finite samples [12].

In conclusion. we present a scenario for the metal-
insulator transition in graphene on hBN, which accom-
panies the commensurate-incommensurate structural
transition observed in recent experiments [12]. We find
that the charge transport at charge neutrally is governed by
a classical percolation model, at least, on intermediate
length scales. Small lattice misalignment corresponds to a
critical-metal state with the conductivity σ ≈

ffiffiffi
3

p
e2=h. The

best alignment between graphene and hBN lattices leads to
the formation of the mean nonzero mass in the correspond-
ing Dirac equation, which is responsible for the insulating
behavior.
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