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We analyze connections between structure and dynamics in two model glass formers, using the mutual
information between an initial configuration and the ensuing dynamics to compare the predictive value of
different structural observables. We consider the predictive power of normal modes, locally favored
structures, and coarse-grained measurements of local energy and density. The mutual information allows
the influence of the liquid structure on the dynamics to be analyzed quantitatively as a function of time,
showing that normal modes give the most useful predictions on short time scales while local energy and
density are most strongly predictive at long times.
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As supercooled liquids approach their glass transitions,
structural relaxation slows down dramatically, but molecular
configurations remain disordered and apparently random
[1,2]. However, computer simulations [3–8] and experiments
[9,10] show that liquid structure and dynamical relaxation
are correlated in these systems, as predicted (or assumed) in
several theories [11–18]. Correlations between structure
and dynamics can be demonstrated at a microscopic level
[3–8], by exploiting the dynamically heterogeneous nature
of glassy relaxation [19]. That is, individual particles have
different propensities for motion [3], depending on local
structure. Here, we use information theory [20] to analyze
the strength of these correlations, by measuring the extent
to which structural measurements can be used to predict
particle dynamics at subsequent times. This quantitative
analysis provides a stringent test of proposed causal links
between structural features and slow dynamics. In twomodel
glass formers, we find that coarse-grained measurements
of energy and density [21–23] give the most predictive
information for long times. In one of the models, vibrational
modes [4–6,17] are strongly correlated with motion on
relatively short time scales. Compared to these effects, the
correlation between dynamics and low energy (or low
enthalpy) local structures is relatively weak.
We consider the Kob-Andersen (KA) mixture of Lennard-

Jones particles [24], and an equimolar five-component hard
sphere (HS) mixture, which mimics colloidal suspensions
[25]. Both systems contain particles of different sizes, with
the diameter of the largest particles being σ ¼ 1 (which sets
the unit of length). The KA system evolves with overdamped
(Monte Carlo) dynamics as in [26]; we focus on a temper-
ature T ¼ 0.5 and density ρ ¼ 1.2. The HS system evolves
by event-driven molecular dynamics [27]; we consider

volume fractions ϕ in the range 0.52–0.58. In both systems,
we use Δt to indicate the fundamental unit of time. The
relaxation at the state points that we consider is up to 3
decades slower than relaxation in the high-temperature or
low-density regime, where it is of orderΔt (in both systems).
Further system details are given in the Supplemental
Material [28].
To characterize particle dynamics in these systems, we

define the dynamical propensity [3] of particle i as
μi;t ¼ hjriðtÞ − riðt0Þj2iiso, where riðtÞ is the particle
position at time t, and the isoconfigurational average is
calculated over many independent dynamical simulations,
all with the same initial particle positions but with
independent random initial velocities (and independent
stochastic dynamics in the KA system). The role of the
“lag time” t0 is discussed in Supplemental Material [28]:
we take t0 ≈ 0.1Δt. We use si to denote a structural
measurement at time t ¼ 0, which depends in general on
particle i and all particles in its vicinity. To quantify the
strength of the correlation between si and the dynamical
propensity μi;t, we use mutual information (MI) measure-
ments [20]. The MI is defined as

Itðμ; sÞ ¼
X

s

Z
dμptðμ; sÞlog2

ptðμ; sÞ
ptðμÞpðsÞ

; ð1Þ

where ptðμ; sÞ is the joint probability distribution of μ and s,
while ptðμÞ and pðsÞ are its marginal distributions. In
Eq. (1), si takes discrete values: for continuous observables
si, the sum over s is replaced by an integral.
The MI gives “the average amount of information about

the propensity μit that is provided by a measurement of si”.
Since si depends only on the initial condition, the MI
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measures predictive information. The MI may be evaluated
for any structural observable si, and it makes no assump-
tions on the nature of the correlation between μi;t and si. As
such, it represents a generally applicable figure of merit for
comparing the influence on dynamics of different structural
measures, going beyond previous comparisons of snap-
shots [3–6,21,23] or analyses of selected subsets of
particles [7,8]. The use of (1) to measure information
[20] is similar to the use of entropy as a measure of disorder
in statistical mechanics, with the role of disorder being
taken by the variation in propensity between different
particles. Particles with the same value of si typically have
less variation in their propensity, so specifying si reduces the
variation in μit, just as introducing a constraint in statistical
mechanics reduces the entropy [36]. The MI is equivalent
to this entropy reduction. Information is measured in bits,
with one bit corresponding to a reduction in entropy of
kB ln 2. Our procedure for estimating MI is described in the
Supplemental Material [28]: the method ensures as far as
possible that we obtain Itðμ; sÞ ¼ 0 if μ and s are indepen-
dent; it also provides an estimate of the numerical uncer-
tainty in the MI. For some other recent applications of MI
measurements in glassy systems, see [37–41].
To illustrate our use of MI, let si be the type (A or B) of

particle i in the KA system. The different types have
different dynamical relaxation so knowledge of the particle
type provides predictive information about particle dynam-
ics. In Supplemental Material [28], we show that measuring
a particle’s type provides between 0.1 and 0.7 bits of
information about its propensity μi;t, depending on the time
t. This value is a useful baseline for the results that follow:
if a structural measurement is strongly coupled with dynam-
ics, we argue that Itðμ; sÞ should be at least of order 0.1 bit,
while MIs much less than this indicate weak coupling.
Figure 1 shows MI measurements between particle

propensities and several aspects of liquid structure, for
both KA and HS systems. Since the influence of particle
type on dynamics is not directly related to glassy behavior,

we measure mutual information where the predictability
based on particle type has already been taken into account.
That is, we measure “the information about μi;t that is
provided by a measurement si, for a particle whose type
is already known.” In the KA system, we achieve this
by restricting the distributions in (1) to particles of
type A, which form the majority (80%) of the system. In
the HS system, we use a conditional MI, Iðμ; sjαÞ ¼P

s;α

R
dμpðμ; s; αÞlog2ðpðμ; sjαÞ=pðμjαÞpðsjαÞÞ, where

α indicates the particle type [28]. Our choices of observable
si reflect different theoretical pictures of glassy systems.
Low-frequency normal modes in a supercooled liquid

define a set of “soft directions” on its potential energy
surface (or energy landscape), and these modes influence
particle dynamics [4–6,17]. Some normal mode properties
can be predicted from arguments based on jamming,
leading to predictions for glassy relaxation [5]. We analyze
normal modes [28] by quenching the KA system to its
nearest energy minimum (inherent structure), and then
diagonalizing the Hessian matrix of the energy. The
resulting eigenvectors and eigenvalues are ~vk and ω2

k, for
k ¼ 1…3N, and one defines a “local Debye-Waller (DW)
factor” Δ2

i ¼
P

kjvikj2=ω2
k that indicates [6,42] the expected

size of fluctuations in the position of particle i, based on an
expansion about the energy minimum. (Here vik is a vector
containing the three components of ~vk associated with
particle i.) Since low frequency modes couple most
strongly to structural relaxation [6], we also define a
generalized DW factor Δ2

i;n, which is calculated using only
the n modes with lowest ωk. In HS systems, normal modes
cannot be defined by reference to a potential energy surface
so we do not consider them here, although alternative
definitions are possible [5,17].
Figure 1(a) shows that for relatively short time scales

t ≈ Δt ≪ τα in the KA model, the mutual information
between propensity and DW factors is large (up to 0.5 bits),
so Δ2

i and Δ2
i;n¼150 are strongly correlated with particle

(a) (b) (c)

FIG. 1 (color online). MI measurements Itðμ; sÞ in the KA system at T ¼ 0.5, and Itðμ; sjαÞ in the HS system. We show MI between
propensity and (a) Debye-Waller factors Δi and Δi;n¼150 in the KA system; (b) coarse-grained energy and density in the KA system;
(c) coarse-grained density in the HS system. Arrows indicate the structural relaxation time τα and error bars indicate numerical
uncertainties in the MI. In (c), the MI signals at short times are comparable with numerical uncertainties. The behavior of the MI at long
times is discussed in the main text.
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motion. This indicates that the normal modes accurately
mimic the fluctuations of the system within its initial
metastable state. On longer time scales, the MI decreases
strongly: as structural relaxation takes place, the “soft
directions” for further motion decorrelate from those at
t ¼ 0 [10,43], reducing the predictive power of the normal
mode analysis. While Δ2

i;n¼150 provides significant predic-
tive information even at t ¼ τα [5,6,17], it appears that
dynamical correlations on these time scales are not fully
determined by motion along the “soft directions” that are
present at t ¼ 0. To make stronger predictions for relax-
ation on long time scales, one might consider correlations
between successive relaxation events, for example through
dynamical facilitation [15,44] or avalanches [10].
In addition to normal modes, coarse-grained energy and

density measurements are also correlated with dynamical
fluctuations [21–23,45]. In particular, field-theoretic
descriptions of particle motion [18,22] are built on
hydrodynamic fields such as the density. We define a
local density, coarse-grained on a length scale l, as

ρ̄li ¼ l−3P
je

−r2ij=l
2

, where the sum runs over all particles
j and rij is the distance between particles i and j [23].

Similarly, the locally-averaged energy is ε̄li ¼
P

jεje
−r2ij=l

2

=
ðl3ρ̄li Þ where εj is the energy of particle j. Figures 1(b),
1(c) show that for l ¼ 2σ these quantities have strong
predictive power on time scales longer than the structural
relaxation time, but the MI is smaller for times t < τα. The
results are broadly similar for both models. We show data
for l ¼ 2σ which illustrates the typical behavior: depend-
ence on l is discussed in Supplemental Material [28].
Throughout the glassy regime, we expect Iðμ; ρ̄Þ and

Iðμ; ε̄Þ to have peaks at some (l-dependent) time t�l, before
decreasing at longer times (see for example the HS data at
ϕ ¼ 0.55). However, for the largest volume fractions it is
clear that t�l is significantly larger than τα, and exceeds our
sampling window. We attribute this large time scale to
hydrodynamic effects that are largely independent of glassy
behavior: on general grounds we expect regions of size
l > σ to relax on a time scale t�l that increases with l and is
significantly larger than τα. Relaxation in high-density or
low-energy regions of size l will therefore be predictably
slower than average up to t ≈ τ�l. On these large time scales,
almost all memory of the initial structure has been lost,
leaving only the hydrodynamic energy or density fluctua-
tions as the dominant predictive factor for dynamics. We
argue that this effect leads to the large MI values at long
times in Figs. 1(b), 1(c). In the simplest theoretical descrip-
tion, one expects t�l ∼ l2=DwhereD is a diffusion constant;
a more accurate estimate of t�l would account for the
relationship between diffusion constants and relaxation
times [46,47]. However, we focus in this study on times t
of order τα, where the system has significant dynamical
heterogeneity and the motion is complex and co-operative.
For theHS system, Fig. 1(c) shows that theMI at τα increases

at large ϕ, indicating that the coupling of dynamics to local
density is increasing as the glass transition is approached,
consistent with [18,22,45]. The MIs at τα are less than
0.1 bits for all states considered, but they increase rapidly for
later times. Overall, Figs. 1(b), 1(c) show that simple
observables like local energy and density couple strongly
to dynamics, giving useful predictive information, particu-
larly on relatively long time scales. We argue that these
correlations merit further study, either theoretically [18] or
numerically, presumably via three-point correlations [22].
Another theory of glassy relaxation is based on locally-

favored structures (LFS): atomic or molecular packings
that have low energy (or enthalpy) [14]. Particles in LFS
typically have slower than average dynamics in glassy
systems [7,8,48,49] and the theory [14] predicts that glassy
relaxation is controlled by the formation of locally stable
regions that are rich in these LFS. The LFS considered here
are illustrated in Fig. 2; full details are given in the
Supplemental Material [28]. For both KA and HS models,
we consider an LFS that is associated with local fivefold
symmetry, which we expect to be associated with lower
propensity for motion [8,25,49–51]. Let n155ðiÞ be the
number of these structures in which particle i participates.
In the KA model we also consider a particular 11-particle
LFS that is correlated with slow dynamics [7,8]: we define

FIG. 2 (color online). MI between propensity and LFS mea-
surements. These MIs are smaller in magnitude than those of
Fig. 1, and all are less than 0.1 bit. (a) KA system, including
pictures of the relevant LFS. (b) HS system, for which we
consider only the ‘155’ LFS. Representative error bars are
shown in (a), while (b) shows error bars only at t ¼ τα.
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n028ðiÞ ¼ 1 if particle i participates in such an LFS,
otherwise n028 ¼ 0.
Figure 2(a) shows results for the KA model, indicating

that n155 and n028 are correlated with particle motion [7,8].
As with the low-frequency normal modes, the MI is largest
on time scales t ≈ Δt indicative of (fast) β-relaxation [1],
but there is still some correlation at the structural relaxation
time. However, the strength of the correlation is smaller for
the LFS than for the normal modes, less than 0.1 bit in all
cases. Figure 2(b) shows similar results for the HS system.
Comparing the two systems, MI values are larger for the
hard spheres, indicating a stronger correlation between LFS
and dynamics [25]. At short times, the MI increases with
increasing volume fraction. However the MI at τα (indi-
cated by the error bars) depends more weakly on ϕ. We
argue that the small MI values at τα and longer times, and
the absence of an increase of the values at τα with volume
fraction, both indicate that the LFS identified here are
relatively weakly coupled to the dynamics, at least for these
models and these state points [52]. In addition, the lifetimes
of most LFS are less than τα [8,49], so their influence on
dynamics is (in most cases) similarly short lived, which
also limits their predictive value.
To summarize our findings so far, Fig. 1 shows that

Debye-Waller factors and coarse-grained measurements of
energy and density have significant coupling to dynamics,
providing predictive information comparable with mea-
surements of particle type in the KA model. The informa-
tion available from LFS measurements is rather weaker.
Also, the MIs for different structural measurements have
very different time dependences, which we interpret in
terms of the decorrelation times of the relevant structural
features. These conclusions illustrate how MI measure-
ments give useful quantitative information about causal
links between structure and dynamics in these systems.
Finally, we show how information theory can also be

used to analyze the predictability of particle motion,
independent of any specific structural observable. Let
pi;tðrÞ be the (isoconfigurational) distribution of particle
displacements ri ¼ jriðtÞ − riðt0Þj. Given data for Np
particles (which may be obtained in general from many
initial configurations), we define

Itðr; idÞ ¼ N−1
p

X

i

Z
drpi;tðrÞ log

pi;tðrÞ
N−1

p
P

ipi;tðrÞ
; ð2Þ

which is the “average amount of information about a
particle’s motion that is provided by specifying its initial
environment.” Since a particle’s initial environment enc-
odes all predictable aspects of its future motion, Itðr; idÞ
indicates how predictable (or reproducible) particle motion
is within the system [3,23]. Figure 3 shows that Itðr; idÞ is
much larger at low temperatures in the KA model than at
high temperatures, indicating that structure is more strongly
coupled to dynamics at low temperatures. The relatively

small absolute values of Itðr; idÞ are consistent with [23],
and indicate that single-particle motion in glass formers has
a large unpredictable component, as well as the predictable
aspects that are encoded by the propensity.
It is also useful to compare Itðr; idÞ with “the average

amount of information about a particle’s dynamics
that is provided by specifying its propensity,” which is
Itðr; μÞ ¼

R
drdμptðr; μÞ logðptðr; μÞ=ptðμÞptðrÞÞ, where

ptðr; μÞ is the joint distribution of displacement r and
propensity μ, and ptðrÞ is the marginal distribution of the
displacement. Since fixing a particle’s initial environment
necessarily fixes its propensity, one has

Itðr; μÞ ≤ Itðr; idÞ: ð3Þ

From Fig. 3, the two quantities in (3) are almost equal for
the KA model. Eq. (3) is an “information-processing
inequality” [20], so this result indicates that the propensity
captures almost all predictable information about single-
particle displacements. For the HS system, we use a
conditional MI between r and μ, to account for particle
type, as above. In this case, the two MIs in (3) differ
somewhat more strongly than they do in the KAmodel: this
situation might arise (for example) if some particles have
finite average displacements hriðtÞ − riðt0Þi that are only
weakly correlated with their propensities.
Nevertheless, we have Itðr; μÞ ≈ Itðr; idÞ in both models,

indicating that the propensity captures almost all predict-
able aspects of the single-particle dynamics [3]. This
further validates the MI as a measure of the influence of
liquid structure on dynamics—possible generalizations of
this work include the use of other structural observables si,
or investigation of collective dynamical measurements
(instead of single-particle propensities).

We thank David Chandler, Peter Harrowell, Peter
Sollich, Gilles Tarjus, and Karoline Wiesner for helpful
discussions. R. L. J. and A. J. D. were supported by the
EPSRC through Grants No. EP/I003797/1 and No. EP/
E501214/1, respectively. C. P. R. gratefully acknowledges
the Royal Society for financial support.

FIG. 3 (color online). Measurements of MI based on particle
displacements ri. (a) KA system for T ¼ 0.5 and T ¼ 1, (b) HS
system at ϕ ¼ 0.58. See text for discussion.
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