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We consider random nondirected networks subject to dynamics conserving vertex degrees and study,
analytically and numerically, equilibrium three-vertex motif distributions in the presence of an external
field & coupled to one of the motifs. For small /, the numerics is well described by the “chemical kinetics”
for the concentrations of motifs based on the law of mass action. For larger 4, a transition into some trapped
motif state occurs in Erdés-Rényi networks. We explain the existence of the transition by employing the
notion of the entropy of the motif distribution and describe it in terms of a phenomenological Landau-type
theory with a nonzero cubic term. A localization transition should always occur if the entropy function is
nonconvex. We conjecture that this phenomenon is the origin of the motifs’ pattern formation in real

evolutionary networks.
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Study of complex networks constitutes a rapidly devel-
oping interdisciplinary area [1,2] which unites investigation
of various types of experimentally observed biological [3],
social [4-6], and engineering [7] networks, as well as
artificial random graphs constructed by various probabi-
listic techniques [8—12]. Many statistical properties of
networks, such as vertex degree distribution, clustering
coefficients, “small world” structure [13], and adjacency
matrices spectra [14], have been studied.

One particular topological characteristic, seemingly very
instructive in providing detailed information about local
network topology, is the distribution of small subgraphs
(motifs). The presence of motifs of a specific type is tightly
linked to network function. For example, transcriptional
regulatory networks are rich in autoregulation loops com-
pared to random graphs with the same vertex degree
distribution [15,16]. Some authors [17] connect the preva-
lence of specific motif types in the transcription factor
networks of E.coili and S.cerevisiae with network evolu-
tion, which might lead to self-consistent optimal circuit
design [18-20]. It is known that protein interaction net-
works have many short cycles and completely connected
subgraphs [21] which may be necessary for signal trans-
duction by feed-back loops [18]. These and many other
examples clearly demonstrate that the prevalence of spe-
cific motifs strongly correlates with the network function.

The statistical analysis of motif distribution (MD) in
various naturally observed directed networks demonstrates
[22,23] that they can be split into four (or three, according
to recent new evidence [24]) broad superfamilies with
respect to their three-vertex motif (triad) distributions, and
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the networks within the same superfamily tend to have
similar functions. However, there is still no common
opinion about the mechanism behind the separation of
MDs into these superfamilies. In this Letter, we put forward
a hypothesis which may give at least a partial answer to this
question.

The basic idea of our approach is to notice that a MD
gives a coarse-grained description of a network: one
integrates out many internal degrees of freedom.
Therefore, there exists an entropy corresponding to each
particular motif distribution. The real observed state of a
network is, then, as usual, a compromise of some sort of
“energy” specific to a particular system (e.g., a selection
pressure) and this generic entropic landscape. If some
distribution is entropically advantageous, it will occur more
often for different possible realizations of energy and will
act as an effective trap for the network dynamics. Such
entropically favorable distributions are the islands of
stability in a sea of all MDs, as conjectured in [25].

We consider, here, statistical properties of the simplest
motifs—the three-vertex subgraphs or triads—in N-vertex
random networks. The microscopic configuration of the
network is completely defined by N(N —1)/2 Boolean
variables denoting presence or absence of edges, while the
MD is described by a vector M whose elements are the
numbers of triads {My, M, ...}, or by vector ¢ of triad
concentrations, {cg,cy,...}, ¢;=M;/M, where M =
N(N —1)(N—2)/6 is the total number of triads in the
network [26]. For directed and nondirected graphs, there
are 16 and 4 different triad types, respectively; however, not
all of them are independent (see below).
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To study the entropy of a network as a function of MD,
we model it in an auxiliary external field, H coupled to the
MD. That is, we consider an ensemble of networks with
the partition function W(H) = "% e 7*X/T with H(X) =
—HM(X), where the sum runs over all microscopic
configurations X and ’ designates conditions imposed on
the configurational space (e.g., the conservation of the
network degree distribution). The unbiased case of equi-
probable network configurations corresponds to H = 0.
This model is athermic: in the absence of the external field,
the partition function is purely a combinatorial object with
no internal interactions and no temperature dependence
(compare this, e.g., with athermic liquid mixtures or non-
self-intersecting random walks [27]); therefore, it seems
natural to introduce a normalized dimensionless field
h = H/T, which is the only external variable governing
the behavior of the model. This approach, reminiscent of
the biased molecular dynamics[28,29], allows us, by
varying h, to skew the motif distribution and, thus, sample
the states of a network which are, otherwise, unaccessible.
As a result, we obtain a full free energy landscape of a
network as a function of motif distribution. To equilibrate a
network, we permute links as shown in Fig. 1(b), preserv-
ing the node degree distribution [30], and use the
Metropolis algorithm to accept or reject single steps.

For h = 0, the system lives in the largest entropic basin
corresponding to some equilibrium distribution of motifs.
As |h| is increased, the motif distribution gets gradually
more skewed. In the limit |h| — oo, the entropic effects
become irrelevant, and the network approaches the state
with the largest possible value of the “energy,” i.e., of the
product hM. Depending on the particular shape of the
entropy function, the motif vector M can be either a smooth
function of external field h, or it can undergo abrupt jumps
at some particular values of h.

Here, we look at the simplest case of the triad
distribution in undirected networks. The randomization
procedure [30] consists of repeated permutations of
randomly chosen pairs of links—see Fig. 1. Each per-
mutation changes the number of triads of different types:
four vertices encircled in Fig. 1 belong to 4 + 6(N — 4) +
2(N —4)(N - 5) different triads, of which (i) four consist
of three vertices constructed from the set (1234), all of
them are of type [1] and do not change in the elementary
step, (ii) 6(N —4) triads including two vertices from
(1234) and one external vertex, some of them change as a
result of a permutation (we call these changes “elemen-
tary reactions” in what follows, not to be confused with
“permutation steps” which, generally speaking, consist
of many simultaneous elementary reactions), and
(iii) 2(N —4)(N —5) triads including only one of the
vertices from the set (1234), they do not change in a
permutation. A direct check shows that there exists only
one type of elementary reaction which changes the
numbers of the triad types
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FIG. 1. (a) Possible triads in a nondirected network. (b) Single
link permutation: links (12) and (34) are removed, and links (13)
and (24) are created. Triad {135} goes from type [0] to type [1],
triads {125, 345}—from type [2] to type [1], and triad {245}
from type [2] to type [3]: three new triads of type [1] and one triad
of type [3] are created instead of three triads of type [2] and one of
type [0], compare (1).

[0] 4 3[2]=[3] + 3][1]. (1)

When a new [0] triplet is formed, it always coincides with
the formation of three triplets of type [2], and elimination
of one [3] triplet and three [1] triplets (see Fig. 1).
Equation (1) sets a connection between the time deriv-
atives of the triads concentrations

30 (1) = Wo(1) = =305(1) = =B, (1), (2)

where M; = (dM,/dr) (i =0...3). Since only one triad
concentration is independent, the undirected network is
effectively 1D in terms of triad distributions. This means
that three independent combinations of ¢y, ..., c3 exist,
which are conserved under (2), one can choose them as

11 :iMl :M,
i=0

l

3
I=> iM; =3pM;
=0 (3)

I3 == (My + Ms3).

N[ =

I, and I, are, respectively, the total number of triads, M,
and links, 3pM, and p is the fraction of links formed in
the system. The invariance of I3 follows from the
conservation of the vertex degree distribution ([22],
Supplemental Material ). We parametrize the one-
dimensional evolution of motifs by a variable m =
(1/2)(M3 —M,), or ¢ =m/M. The external field h
coupled to m is also one dimensional, and the dimension-
less network energy in the external field reads

E=—hm= —%h(Mg - M,). (4)

According to the detailed balance rule, in an equilibrium
network subject to energy E, for the probabilities of
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forward, p., and backward, p_, permutation steps, one
has p,/p_ = e 2E, where AE is the overall energy
change due to all elementary reactions invoked by this
permutation step. In the Metropolis algorithm, this is
achieved by accepting the reaction with probability 1 if it
decreases E, and with probability exp{—AE}, otherwise.

Since each permutation implies many simultaneous
elementary reactions (1), the reactions are, generally speak-
ing, not independent. A natural first approximation is,
nevertheless, to neglect correlations between them and
apply the law of mass actions (LMA) [31,32] to the
chemical kinetics described by Eq. (1). It is straightforward
to obtain

pi__eh_c3c?_(A—l—c)(2—3p—A+3c)3

K - - ki
P cocs (A=c)Bp—1-A-3c)?

(5)

where A = I;/M [see (3)], and K = ¢ is the equilibrium
reaction constant (K = 1 for & = 0).

The mean-field equation (5) is applicable to networks
with any degree distribution. In what follows, we concen-
trate on a particular example of conventional Erd6s-Renyi
(ER) networks [8] with bond formation probability p. The
triad concentrations, in this case, are given by

co=(1-p)* ¢ =3(1-p)*p;
¢, =3(1-p)p* & =rp% (6)
A= (e +e) =T/M = [p + (1= p)])2

All concentrations, as expected, satisfy (5) with K = 1.
Starting with different p, we perform a randomization at
nonzero fields # = In K > 0. The typical resulting depend-
ences ¢(h) = c(h) — ¢(h = 0) are shown in Figs. 2(a) and
2(b) for networks created at p = 0.05 [2(a)] and p = 0.35
[2(b)]. The dashed lines show the ¢(h) dependence as
given by solving (5) with A = A given by (6). At high &, the
¢(h) curve saturates due to the depletion of triads of type 2
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FIG. 2 (color online). The motif distribution ¢(h)=c—c(h=0)
in ER networks with p = 0.05 (a) and p = 0.35 (b), reequili-
brated at different 4. Solid lines—numerical results for networks
of sizes N = 80 (magenta diamonds), 160 (blue triangles), 240
(red circles), and 320 (black squares), dashed line—predictions of
the LMA (5).

with growing c. In the vicinity of 4 = 0, the numerical
results are in good agreement with the LMA (5), while for
larger &, a sharp change in ¢(h), not predicted by the LMA,
is registered [33].

The discrepancy between theory and numerical experi-
ment is due to correlations between elementary reactions
constituting a single permutation step. To check this, we
study [34] the distribution of the number of forward and
backward elementary reactions constituting a single per-
mutation step and show that while, for small 4, this
distribution is nearly Gaussian (as one expects for inde-
pendent elementary reactions), in large fields, the distri-
bution acquires a peculiar bimodal shape signaling strong
correlations between elementary reactions.

For large p, the transition between two regimes is very
narrow, reminiscent of the first-order phase transition; in
[34], we show that hysteresis typical for such transitions is
also observed. For smaller p, the transition is less narrow
due to larger fluctuations, although its width decays with
increasing N. For p = 0.05, the difference between the
specific free energies of two competing phases is relatively
small, and both phases could coexist within the whole
transition region (compare to the coexistence of two phases
in a liquid-liquid 1st order phase transition reported in
[36]). To verify this, we have measured (see [34]) the
distribution of links in the network with respect to the
number of triangles (type [3] subgraphs) they belong to.
The clear bimodality of the distribution shows that there is,
indeed, a coexistence of triangle-poor and triangle-rich
phases in the system.

We describe the observed transition via a phenomeno-
logical Landau-type theory [32] with ¢ as an order
parameter. Since there is no ¢< —¢ symmetry, the
Landau expansion of the free energy is expected to include
odd and even powers of ¢, giving up to the fourth order

H = Hy — Mhé;
b ’ ’
Ho/Mzgqbz - (1\; p)¢3 +g(1\; p)¢4+0(¢4). (7)

Here, H is a purely combinatorial (i.e., temperature and
field-independent) free energy of a network with given
motif distribution in the absence of the external field; by
definition, it has a minimum at ¢ = 0. The zero-field
susceptibility y, according both to LMA (5) and computer
simulations at small /4, is N independent and equals y =

(82H<¢)/6(¢)2)|h=0 = (0h(c)/0c)|j—y giving

1+9+9+1 1 (8)
= T T - T - = =37 a2
¢y ¢ & ¢ p(1-p)

where the last equality is true only for ER networks. Higher
order coefficients b(N, p) and g(N, p) are expected to be N
dependent.
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The structure of the Hamiltonian (7) allows for a first
order phase transition. Indeed, equilibrium value of ¢ is
defined by minimizing H(¢) in (7), and is given implicitly
by the equation

1 — b* + g = h. )

For b* < 3gy, this equation has a single solution for any &
(the free energy H,, is always convex), but for b> > 3gy,
there exists a region with three solutions, which corre-
sponds to two competing minima of the free energy and one
unstable maximum in between. In the thermodynamic limit
N — oo, the transition occurs when the values of H match
in the minima, while in smaller systems, the fluctuations
smear the transition.

The ansatz (9) allows us to fit numerical ¢(h) depend-
ences as shown in Fig. 3. While for p = 0.35, the transition
looks as a discontinuous jump of the order parameter at a
point defined by the Maxwell rule, for p = 0.05, the
behavior in the transitional region is given by a linear
combination of two competing phases.

Importantly, the transition point shifts to lower & with
increasing size of the network seemingly as N™* with
a=0.5+0.1 [34]. In turn, the width of the transition
decays more rapidly with N, approximately as N~'.

To summarize, projection of microscopic (in terms of
network nodes) onto macroscopic (in terms of triad con-
centration) description of a network gives rise to a non-
trivial dependence of the entropy on a given motif
distribution. In the case of a nondirected network, the
macroscopic description is one dimensional. In the pres-
ence of an external field &, the equilibrium value of the
motif concentration, ¢ = ¢(h) — c¢(h = 0), is determined
by the balance of energy associated with & and entropy
originating from mapping from microscopic to macro-
scopic description. If the entropic landscape is concave,
a phase transition into a state with highly skewed motif
distribution occurs at some critical h.. This transition,
observed numerically for ER networks, violates the law of
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FIG. 3. Comparison of the numeric dependence ¢(h) for

N = 320 (squares) and the best fitting Landau theory (9) (lines).
(@ p=005 y=p3(1-p)3=9330, b=172x10,
c=845x10° () p=035 y=p31-p)3 =85,
b=446x10%, c = 5.7 x 10*.

mass action due to correlations between elementary reac-
tions (1) in strong fields.

To check the generality of this result, we modified the
elementary permutation rules allowing an edge connecting
two arbitrary vertices (i, j) to be switched to some other pair
(i, k) (k # i, j). Under this dynamics, the nodes’ degrees are
not conserved, and the integral I3 in (3) is absent.
Accordingly, the dynamics in the motif space becomes
effectively two dimensional with elementary reactions

2[1]2[0] + [2).

However, application of an external field h (which in this
case is a 2D vector) still leads to a transition to a localized
motif distribution [37]. Another example of a similar
transition, which corresponds to the dynamics with random
creation and elimination of bonds with the external field
coupled to triangles; h = 0,0,  in the 3D space of motifs
was first observed in [38] and discussed theoretically in [39].
Note, also, the conjugate effect of bimodality in the triangle
parameter estimates in exponentially distributed networks
reported in [40]. In [34], we provide preliminary data on
networks with fixed scale-free distributions of edge degrees,
showing that similar localization transition happens there
as well.

The phenomenon of localization of the motif distribution
under an external field into distinct entropic traps is
apparently wide spread. We conjecture that stable motif
profiles constituting superfamilies [22] may correspond to
such stability islands inherent to the complicated under-
lying entropic landscape of a multidimensional motif space
of directed networks. Notably, in the presence of well-
defined stability islands, new information about the net-
work structure may cause a drastic reclassification of a
network from one family to another (akin that observed in
[24]) rather than a gradual change in its motif profile.

The concept of entropically induced localization may be
instrumental in various other fields. Compare it, for
example, with the Eigen model of biological evolution
in the space of heteropolymer sequences [41]. There, the
localization-delocalization transition, known as the “error
catastrophe,” separates the state localized in the vicinity of a
preferred pattern and one where it is completely random
[42—44]. The transition occurs due to an interplay between
the attraction to a pointlike potential well and the entropic
repulsion from this well due to the exponential growth of
the number of states with increasing Hamming distance
from the well. In our case, a complimentary phenomenon
occurs: the entropic landscape of a system acts as a source
of effective attractive traps, while the uniform external field
regulates the transitions between trapped states. It seems
that trapping of a complex system in stability islands due to
competition between selection and randomness provides a
generic mechanism of localization in complex biological
and social systems.
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