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We consider the inertial range spectrum of capillary wave turbulence. Under the assumptions of weak
turbulence, the theoretical surface elevation spectrum scales with wave number k as Iη ∼ kα, where
α ¼ α0 ¼ −19=4, energy (density) flux P as P1=2. The proportional factor C, known as the Kolmogorov
constant, has a theoretical value of C ¼ C0 ¼ 9.85 (we show that this value holds only after a formulation
in the original derivation is corrected). The k−19=4 scaling has been extensively, but not conclusively, tested;
the P1=2 scaling has been investigated experimentally, but until recently remains controversial, while direct
confirmation of the value of C0 remains elusive. We conduct a direct numerical investigation implementing
the primitive Euler equations. For sufficiently high nonlinearity, the theoretical k−19=4 and P1=2 scalings as
well as value of C0 are well recovered by our numerical results. For a given number of numerical modes N,
as nonlinearity decreases, the long-time spectra deviate from theoretical predictions with respect to scaling
with P, with calculated values of α < α0 and C > C0, all due to finite box effect.
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Introduction.—Kolmogorov [1] describes the general
powerlike cascade process in the inertial range of turbu-
lence of incompressible flow. This result has been observed
in many physical systems, including plasma physics [2],
capillary or graivity waves [3,4] and optics [5]. In special
cases of weak (or wave) turbulence, mathematical formu-
lations are more accessible and the cascade spectrum can be
obtained as an exact stationary solution of the kinetic
equation, which governs the evolution of wave spectrum
due to nonlinear resonant interactions.
For capillary waves, the framework of weak turbulence

theory (WTT) is developed by Zakharov and Filonenko [3]
(and reformulated in [6,7]). The isotropic spectrum of
surface elevation yields a powerlike solution in the inertial
range which is expressed in closed form,

IηðkÞ ¼ 2πC
P1=2ρ1=4

σ3=4
k−19=4; ð1Þ

where C is the Kolmogorov constant with a theoretical
value of C ¼ C0 ¼ 9.85, P the energy (density) flux to
large wave numbers, σ the surface tension coefficient, and
ρ the fluid density. IηðkÞ is defined [6] by hη̂~kη̂�~k0 i ¼
IηðkÞδð~k − ~k0Þ, with the angle brackets denoting ensemble
average and η̂~k ¼ 1=ð2πÞ∬∞

−∞η~re−i
~k·~rd~r being the Fourier

transform of η~r ≡ ηðx; yÞ. In a homogeneous wave field,
this definition can be shown to be equivalent to (cf. [8])
IηðkÞ ¼ ∬∞

−∞hη0η~rie−i~k·~rd~r. Due to Wiener-Khinchin
theorem, IηðkÞ is proportional to the energy density
spectrum ΦηðkÞ of η [9] with a factor of 4π2.
We note that there is a difference of a factor of 2π

between (1) and the form in [6]. This results from a missing
factor of 1=ð4π2Þ in their evaluation of P, which is obtained
from time derivative of energy density E ¼ R

SðkÞd~k,

where SðkÞ is the spectral density of energy density. In
expressing SðkÞ in terms of wave action density and
frequency, a factor of 1=ð4π2Þ, arising as analogously
between ΦηðkÞ and IηðkÞ, is missing in [6].
The spectrum (1), and especially the assumptions made

in the derivation, which include phase stochasticity, infinite
domain and the dominance of three-wave resonant inter-
actions, have been the subjects of many investigations. In
particular, the scaling of the spectrum with respect to wave
number Iη ∼ kα has been tested experimentally [10–13] and
numerically [6,14,15]. While the exponents found in
[6,10,11,14,15] are consistent with the theoretical value
of α0 ¼ −19=4, deviations are also reported in [11,12] with
α ¼ −5.3, and [13] with α ¼ −6.0 under weak or narrow-
band forcing.
The scaling of Iη with P, and the value of Kolmogorov

constant C, have remained open questions. Recent
experimental observations from two independent groups
[10,11] suggest that a linear scaling relation Iη ∼ P should
apply, in apparent disagreement with (1). This controversy
is summarized in [16], and appears now resolvable [17]
by a better experimental estimation of P that distinguishes
the energy flux from the energy dissipation at large
scales. There is no direct numerical investigation of this
scaling.
Attempts at estimatingC numerically are given in [6] and

[15] by, respectively, a potential flow simulation and a
Navier-Stokes simulation, with reported values of Cpot ¼
1.7 and CNS ¼ 5.0. This value is only recently measured
experimentally [17] with Cexp ¼ 0.5. Possible reasons for
these deviations from C0 ¼ 9.85 may include normaliza-
tion in IηðkÞ, missing 2π factor in (1), influence of gravity
(for Cexp), and coherent structures and dissipation at broad
scales (for CNS and Cexp).
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Our objective is to investigate isotropic turbulence of
capillary waves, and evaluate the validity of WTT, by direct
numerical simulation of the primitive Euler equations. The
aim is to obtain a clean development of the wave spectrum
not obscured by complexities associated with the mechani-
cal forcing of the waves [6,10,11,14,17] and difficulties
associated with the estimation of P [10,11,17].
Furthermore, we seek to uncover the physics at a sub-
stantially broader range of nonlinearity level relative to
existing measurements [10,11,17] and numerics [6,14,15].
To achieve this, we consider the free decay of an arbitrary
initial wavefield represented by a general isotropic spec-
trum. We then look for the development of a powerlike
spectrum in the process of freely-decaying turbulence. The
energy flux P is evaluated, without ambiguity, by direct
evaluation of the energy dissipation rate in the dissipa-
tion range.
We show the development of the WTT k−19=4 powerlike

spectrum, at high enough nonlinearity, with Iη ∼ P1=2.
The Kolmogorov constant C is for the first time found
to be close to C0 (within 1% error). With decreased
nonlinearity on a fixed grid (or decreased mode number
N for a given nonlinearity), our results illustrate the finite
box effect [6]; i.e., nonlinear resonance broadening
becomes insufficient to overcome the discreteness in k,
which results in a reduced energy transport. This is
reflected in the reduction of P, larger and smaller values
respectively of observed C and α, relative to WTT. These
results offers, for the first time, both a validation of and
supplement to WTT in the description of capillary wave
turbulence.
Numerical formulation.—We consider capillary waves in

two surface dimensions on the free surface of an ideal
incompressible fluid. For small Bond number, gravity is
neglected. The system is described in the context of
potential flow [velocity potential ϕðx; y; z; tÞ] in terms
of nonlinear evolution equations [18] for surface
elevation ηðx; y; tÞ and velocity potential at the surface
ψðx; y; tÞ≡ ϕðx; y; η; tÞ,

ηt ¼ −∇η · ∇ψ þ ð1þ∇η ·∇ηÞϕzjη þ F−1½γkη~k�; ð2Þ

ψ t ¼ −
1

2
∇ψ · ∇ψ þ 1

2
ð1þ∇η · ∇ηÞϕzj2η

þ σ

ρ
∇ ·

∇ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇ηj2

p þ F−1½γkψ ~k�; ð3Þ

where F−1 is the inverse Fourier transform, γk is the
dissipation rate at small scales.
For the numerical integration of (2) and (3), we use the

high-order spectral (HOS) method [19,20] (with a modi-
fication for capillarity). To verify the method’s capability
for modelling capillary wave, we use as a benchmark test
the Crapper analytical solution for a one-dimensional
capillary wave of finite amplitude [21]. Table I shows
the exponential convergence of surface vertical velocity
ϕzjη with the nonlinearity order M and maximum wave
number N (theM and N convergences are established after
sufficient N and M respectively). Table II illustrates the
accuracy of the method for up to Oð500Þ fundamental
periods of the wave (a time scale sufficient for obtaining
fully developed capillary wave spectrum).
Numerical simulation.—To model the dissipation, we

introduce γk beyond kγ in (2) and (3) to represent the
physical (viscous) damping, with the following form in
Fourier space [14]:

TABLE I. Maximum absolute error in surface vertical velocity ϕzjη of a Crapper wave of steepness ϵ for varying
nonlinearity order M and number of alias-free modes N.

M

ϵ N 2 3 4 6 8

0.1 4 2.0 × 10−4 1.1 × 10−5 3.6 × 10−6 2.6 × 10−6 2.6 × 10−6

8 2.0 × 10−4 1.1 × 10−5 1.8 × 10−6 1.7 × 10−8 7.9 × 10−10

16 2.0 × 10−4 1.1 × 10−5 1.9 × 10−6 1.8 × 10−8 1.7 × 10−10

0.2 4 1.6 × 10−3 2.0 × 10−4 1.1 × 10−4 1.1 × 10−4 1.1 × 10−4

8 1.6 × 10−3 1.8 × 10−4 6.1 × 10−5 2.3 × 10−6 7.3 × 10−7

16 1.6 × 10−3 1.8 × 10−4 6.1 × 10−5 2.3 × 10−6 9.0 × 10−8

0.3 4 5.7 × 10−3 1.2 × 10−3 7.6 × 10−4 9.4 × 10−4 9.3 × 10−4

8 5.7 × 10−3 9.6 × 10−4 4.8 × 10−4 4.4 × 10−5 3.9 × 10−5

16 5.7 × 10−3 9.6 × 10−4 4.8 × 10−4 4.2 × 10−5 3.8 × 10−6

TABLE II. Modal error f1=NjjjηkN j2 − jηkAj2jj1g1=2=a (where
ηkN and ηkA are the numerical and analytical solutions of ηk, and
a the wave amplitude) in long time simulation of Crapper wave
with M ¼ 3, N ¼ 16, and up to t=T ¼ 500, where T is the
fundamental period of the wave.

t=T

ϵ 100 200 300 400 500

0.3 1.9 × 10−4 4.1 × 10−4 5.2 × 10−4 6.0 × 10−4 7.4 × 10−4
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γk ¼
�
γ0ðk − kγÞ2; k ≥ kγ
0; k < kγ:

ð4Þ

The energy (density) dissipation rate, and thus the energy
(density) flux, due to (4) can be evaluated explicitly
(cf. [14]):

P ¼ 1

4π2

Z Z
k>kγ

γðkIψðkÞ þ σk2IηðkÞÞd~k: ð5Þ

The simulation starts from an initial isotropic wave field
with a somewhat arbitrary spectral energy distribution. The
wave field is allowed to evolve freely, with total energy
decreasing due to dissipation at high wave numbers. In the
presence of nonlinear wave interactions, after sufficient
time t > tA, a powerlike spectrum develops in the inertial
range. In this asymptotic phase, as the overall spectrum
decays with time, its slope in the inertial range as well as
scaling with P, and value of C remain quasi-stationary and
are evaluated. Note that the general development of the
powerlike spectrum is independent of the details of the
initial spectrum (which we verify numerically). For speci-
ficity, we choose initial wave fields described by
JONSWAP spectra. The nonlinearity of the initial spectrum
is characterized by the effective wave steepness
β ¼ kpHs=2, where kp is the peak wave number and Hs
is the significant wave height. To cover a broad range of P
(and nonlinearity), we can conduct a single simulation
(starting with a sufficiently large β) and follow the
asymptotic spectrum as it decays. Alternatively, we can
conduct different simulations with different initial spectral
energies. The predicted results are effectively identi-
cal (Fig. 2).

HOS simulations are carried out with Nx ¼ Ny ¼ N ¼
128 alias-free modes, with kp ¼ 16k0 and kγ ¼ 60k0,
where k0 is the fundamental wave number of the (doubly
periodic) domain. For dissipation, we use γ̂0≡
γ0k2p=ωp ¼ 5 × 10−3, which obtains the asymptotic spec-
trum with a smooth development of and connection
between the powerlike and dissipation ranges (we verify
that the realized spectra and evaluation of P are not
sensitive to variation of γ0 around this choice). HOS can
handle arbitrary order M of nonlinear interactions.
Although the nonlinear capillary wave evolution is
expected to be dominated by the three-wave process [3],
we follow [14] to use M ¼ 3 (corresponding to their H2).
The inclusion of four-wave processes is important for
broadening the spectral tail where the nonlinearity level
is low for triad resonance (cf. the discussions [6,11,14]).
Thus M ¼ 3 significantly speeds up the spectral evolution
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FIG. 1. Typical development of spectrum with time. Initial
spectrum at t=Tp ¼ 0 (dashed line), fully-developed spectrum
corresponding to P̂ ¼ 9.6 × 10−7 (solid line), decayed spectra
corresponding to P̂ ¼ 1.6 × 10−7 (single dotted dashed line) and
3.2 × 10−8 (double dotted dashed line).
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FIG. 2. Time trajectories of (P̂1=2, ~Iη) for two simulations with
different initial effective wave slopes: β ¼ 0.225 (solid line) and
β ¼ 0.2 (dashed dotted line). For reference, the WTT Iη ∼ P1=2

scaling (dashed line) is indicated.
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FIG. 3. ~Iη (solid line with circles) and C=C0 (solid line with
squares) as functions of P̂1=2, compared to WTT (dashed line).
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relative to M ¼ 2 (although the final predictions are little
affected).
Results.—Figure 1 shows a typical evolution of the

spectrum starting with β ¼ 0.25. For this case, a powerlike
spectrum is fully developed at tA ∼Oð500TpÞ, where
Tp ¼ 2πðρ=ðσk3pÞÞ1=2. Within a substantial range, the
powerlike spectrum follows closely the theoretical slope
of α0 ¼ −19=4. As the spectrum decays, the (normalized)
energy flux P̂≡ P=ðσωpÞ also decreases, while the inertial
range remains powerlike.
We define ~Iη ≡

R kγ
kp
IηðkÞdk as an integral measure of the

amplitude of IηðkÞ within the inertial range. The time
trajectories of (P̂1=2, ~Iη), for two simulations with different
initial values of β are plotted in Fig. 2. Indicated are the
respective time tA when the asymptotic phase is established
for each case. For t > tA, the slopes of the (P̂1=2, ~Iη)
trajectories follow closely the WTT Iη ∼ P1=2 scaling. We
establish this scaling for a wide range of P̂ by repeating
simulations such as those in Fig. 2 for many initial values of
β or equivalently by following a long single evolution
starting from large β.
Figure 3 plots P̂1=2 versus ~Iη for P̂ ∈ ½P̂min; P̂max�

ranging over 1.5 decades. Our P̂max is limited by the
capability of HOS, and P̂min is chosen to be sufficiently
small to reveal the mechanism at low nonlinearity level.
The WTT P1=2 scaling is realized, with the deviation from
the theoretical fit greater at lower values of P̂ (and ~Iη).
These deviations are due to the finite box effect [6]; i.e.,
nonlinear resonance is limited by the finite wave number
spacing. As a result, fewer triads are active in transferring
energy, resulting in a reduced P̂. For given N, as non-
linearity further decreases below some critical value, frozen
turbulence [6] obtains and P̂ → 0 with a finite ~Iη. The
present result provides a direct numerical confirmation of
Iη ∼ P1=2 for the first time. They thus help support the
recent clarification [17] of apparent inconsistencies in the
experimental predictions [10,11] and illustrate the finite
box effect by substantially extending the range of P̂
realized in the measurements.

The Kolmogorov constant C can be evaluated directly
from the simulation data. Specifically, at each value of P̂,
we define κðαÞ ¼ ½k1; k2�α as the maximum spectral inter-
val within which the linear fit log IηðkÞ ∼ α log k has
R2 > 0.99. CðP̂Þ (Fig. 3) is then evaluated from (1) in
the range κðα0 ¼ −19=4Þ. The higher values of C at lower
values of P̂ reflect the deviation from the WTT Iη ∼ P1=2

scaling in this range. With the increase of nonlinearity,
CðP̂Þ asymptotically approachesC ¼ 9.90, within 1% error
of the theoretical C0 ¼ 9.85.
In practice, the finite box effect, in limiting the nonlinear

resonance, also results in a deviation of α from α0. To show
this effect, at each P̂, we calculate a best-fit α and the
spectral range κðαÞ. The dependence of α on P̂ is shown in
Fig. 4. Near P̂max, α ¼ −4.8, and it decreases monotoni-
cally with decreasing P̂ to α ¼ −5.8 at P̂min. Similar
phenomenon of steepening of the spectrum at low non-
linearity has been reported in experiment for gravity wave
[22]. Also reported in Fig. 4 are the widths of the spectral
ranges κðαÞ and κðα0Þ as functions of P̂. κðαÞ is almost
constant, while κðα0Þ decreases monotonically with
decreasing P̂. In general κðαÞ > κðα0Þ except asymptoti-
cally at large P̂. These results are in contrast to the
theoretical self-similar decay [23], and are useful in the
interpretation of observed deviations of α from α0 in
experiments [11–13].
For given nonlinearity, finite box effect can be mitigated

by increasingN (or by increasing the physical dimension of
the experimental tank). We show this by varying N with
N ¼ 64 and 256 from the preceding value of N ¼ 128
(with kp=k0 and kγ=k0 scaled correspondingly). Figure 5
shows the calculated α and C with varying N. For
sufficiently large N, α and C approach WTT values
showing that earlier deviations from these asymptotic
values are indeed manifestations of the finite box effect.
Conclusions.—In this Letter, we present results from

direct numerical simulations of freely-decaying capillary
wave turbulence. With the precisely evaluated P from the
energy dissipation rate, we are able to confirm the WTT

0 0.2 0.4 0.6 0.8 1

x 10
−6

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−6

0

0.2

0.4

0.6

0.8

1

FIG. 4. Evaluated α (solid line with triangles) compared to
WTT (dashed line), and log10ðk2=k1Þα (solid line with circles),
log10ðk2=k1Þα0 (solid line with squares) as functions of P̂.
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P1=2 scaling over a broad range of P. For sufficiently large
P, the WTT k−19=4 scaling and theoretical value of the
Kolmogorov constant C are recovered to high accuracy. At
lower nonlinearity, the deviations of the power-law spectral
slope α and proportionality constant C from WTT are
obtained and shown to be a result of finite box effect. The
current work reinforces the validity of WTTas a description
of capillary wave turbulence over a broad range of energy
fluxes, and quantifies the deviations fromWTT due to finite
box effect when grid resolution or tank size is limited. We
have studied the special case of capillary wave turbulence,
our main findings are expected to also hold for weak
turbulence in other similar physical systems.
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