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It is expected that the Gregory-Laflamme (GL) instability in the black string in gravity is related to the
Rayleigh-Plateau instability in fluid mechanics. Especially, the orders of the phase transitions associated
with these instabilities depend on the number of the transverse space dimensions, and they are of first and
second order below and above the critical dimension. Through the gauge-gravity correspondence, the GL
instability is conjectured to be thermodynamically related to the Hagedorn instability in large-N gauge
theories, and it leads to a prediction that the order of the confinement-deconfinement transition associated
with the Hagedorn instability may depend on the transverse dimension. We test this conjecture in the
D-dimensional bosonic D0-brane model using numerical simulation and the 1=D expansion, and confirm
the expected D dependence.
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Introduction.—Understanding the Hagedorn nature and
the related confinement-deconfinement (CD) transition is
one of the most important problems in gauge theory.
Recently, the gauge-gravity correspondence [1–3] sug-
gested the relationship between the Hagedorn instabilities
in the large-N gauge theories and the Gregory-Laflamme
(GL) instabilities [4] in gravity [5–8]. Also, the GL
instabilities are related to the Rayleigh-Plateau (RP) insta-
bilities in fluid mechanics [9–12]. Given these relations, the
Hagedorn instabilities in the large-N gauge theories are
expected to have similarities to the GL and RP instabilities.
The aim of this Letter is to shed light on this insight by
studying the large-N gauge theories.
In gravity, when we consider a background spacetime

RD−1;1 × S1, we obtain the uniform black string (UBS)
solution whose event horizon winds on the S1 space
uniformly. In this solution, if we increase the size of the
S1 space with the fixed mass, the horizon of the UBS is
stretched, and the GL instability arises above a critical size
[4]. This instability makes the horizon of the black string
nonuniform, and the GL transition occurs. One significant
property of the GL transition is that the order of the
transition depends on the number of the transverse dimen-
sion D [13–16]. At D ≤ 12, we have a discontinuous first-
order transition, and the stable solution at the critical size is
the localized black hole (LBH) (D ≤ 10) or the nonuniform
black string (NUBS) (D ¼ 11; 12). At D ≥ 13, the second-
order transition to the NUBS occurs. Interestingly, if we fix
the Hawking temperature rather than the mass, the order
of the transition is first at D ≤ 11 and second at D ≥ 12.
(See a review [17].)
Remarkably, this instability is similar to the RP insta-

bility in fluid mechanics. Consider an extended fluid in

RD−1;1 × S1 with the same configuration as the event
horizon of the UBS. If we increase the size of the S1 by
fixing the volume, the RP instability arises above a critical
size and the fluid tends to be nonuniform. The order of
the phase transition associated with this instability depends
on the dimensionD. It is of first order atD ≤ 11 and second
order at D ≥ 12 [9,10]. Thus, again, the transition becomes
of higher order as D increases. Such a similarity between
the fluid and the black hole horizon may imply the
existence of the particlelike black hole microstate [3] or
the membrane paradigm [18].
Since the gauge-gravity correspondence predicts that

the GL transition is thermodynamically related to the CD
transition of the large-N gauge theories [5–8], we expect
a similar D dependence there. To test this conjecture,
we study a D0-brane system from the gauge theory side
[6,7,19–24] and investigate the D dependence of the CD
transition using Monte Carlo (MC) simulation for small D
and 1=D expansion for large D [22].
GL as CD transition.—First, we show how the GL

and CD transitions are thermodynamically related in the
gauge-gravity correspondence. We see this connection in N
D0-branes in R8 × S1β × S1L [6]. Here, S1β is the thermal
temporal circle with the period β, and S1L is the spatial circle
with the period L. We take x1 as the spatial circle
coordinate. This system at large N in the strong coupling
is described by classical supergravity, which has the
following two solutions: the smeared black D0-brane
solution describing the uniformly aligned D0-branes
(UBS) and the black hole solutions describing the
D0-branes localized on the S1L circle (LBH). The UBS
and LBH are stable for small and large L, respectively,
and the first-order GL transition occurs between them [6].
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This system is also described by the one-dimensional
SUðNÞ super Yang-Mills (1d SYM) theory [25]. This theory
involves the N × N adjoint scalars XI (I ¼ 1; 2;…; 9)
whose eigenvalues represent the positions of the N
D0-branes in R8 × S1L. The eigenvalues of X

1 are between
0 and L because of the compactification. Then, the GL
transition is interpreted by the transition from the uniform to
the localized distribution of the X1’s eigenvalues. (This is a
large-N phase transition and is smoothed out at finite N.)
This transition is identical to the CD transition through the T
duality along the x1 direction as follows. This T duality maps
the D0-brane model to the D1-brane model [the 2d SUðNÞ
SYM theory on the dual S1L0 whose periodicity is
L0 ¼ ð2πÞ2α0=L, where α0 is the Regge parameter] [25]

S ¼ N
λ

Z
β

0

dt
Z

L0

0

dxTr

(
1

2
F2
01 þ

X9
I¼2

1

2
ðDμXIÞ2

−
X9
I;J¼2

1

4
½XI; XJ�2 þ fermions

)
: ð1Þ

Here, λ is the ’t Hooft coupling of the 2d SYM theory, F01

is the field strength, and Dμ is the covariant derivative.
The adjoint scalar X1 has been mapped to the gauge field
2πα0A1. Thus, before and after the GL transition, the
configuration of the eigenvalues of A1 changes from the
uniform distribution between 0 and L=2πα0ð¼ 2π=L0Þ to
the localized one [(I) and (III) of Fig. 1]. If we take the
static diagonal gauge ðA1Þij ¼ ajδij (i; j ¼ 1;…; N), the
Polyakov loop along the x1 circle, which is the order
parameter of the deconfinement [26], is written as
u1 ¼

P
N
j¼1 e

iL0aj=N. Then, we easily see that hju1ji ¼ 0

and hju1ji ≠ 0 in the uniform and localized distribution,
respectively. Thus, the GL transition can be interpreted as
the CD transition, and the confinement and the deconfine-
ment phases correspond to the UBS and LBH. Indeed, this
connection has been tested numerically in Ref. [23].
Our model.—We take the high-temperature limit of the

2d SYM theory (1) [6]. Then, the thermal Kaluza-Klein
nonzero modes and fermions are classically decoupled and
the theory reduces to the following model at D ¼ 9:

S ¼
Z

L0

0

dxTr

�XD
I¼1

1

2
ðD1XIÞ2 −

XD
I;J¼1

g2

4
½XI; XJ�2

�
: ð2Þ

Here, the coupling constant g and adjoint scalars XI have
been rescaled from (1), and the gauge field A0 has become
one of the adjoint scalars XI. To investigate the D
dependence of the CD transition, we assign various values
to D in the model (2). Since the adjoint scalars XI describe
the D0-branes’ positions, it is natural to compare the D
dependence of the GL transition in RD−1 × S1β × S1L and the
CD transition of the model (2).
However, we cannot expect that theD dependence of the

GL transitions in Refs. [13–16] and that of our model (2)
agree exactly. This is because Refs. [13–16] studied the
neutral black strings which are distinct from the smeared
blackD0-brane solution. Besides, the model (2), except for
D ¼ 9, is not related to theD0-branes in superstring theory.
Thus, we cannot apply the gauge-gravity correspondence
[2], and it is no wonder that no quantitative agreement
is found. However, we can still interpret our model as
interacting N particles in RD−1 × S1β × S1L at high temper-
ature and may show some fluid behaviors. Hence, we study
the model (2) focusing on the qualitative tendency of the D
dependence of the order of the phase transitions.
Analysis through the 1=D expansion.—The model (2) at

large D has been studied through the 1=D expansion [22],
and we summarize the results. At large D, we can integrate
out the adjoint scalars XI [22,27] and obtain the effective
action for the gauge fields A1 as

Seff ¼ N2

�
a1ju1j2 þ bju1j4 þ

X
n≥2

anjunj2 þ…

�
; ð3Þ

where un ≡P
N
j¼1 e

inL0aj=N, and we have taken the static
diagonal gauge. The coefficients ðan; bÞ are given by

a1 ¼ 1 − e−L
0 ~λð1=3Þ
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where ~λ ¼ g2ND, and we have takenD → ∞, N → ∞, and
g → 0 by fixing ~λ finite. The expressions (4) are valid for

large L0, so that e−L
0 ~λð1=3Þ ≲ 1=D.

Then, we can read off the phase structure of the model
(2) from the effective action (3). For large L0 (small L),

FIG. 1. The schematic plots of the eigenvalue distribution of
A1 defined by ρðαÞ≡ ð1=NÞPN

j¼1 δðα − L0ajÞ ¼ ð1=2πÞð1þP
n≠0une

−inαÞ at large N.
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since an are positive for all n, junj ¼ 0 is stable. There, the
eigenvalue distribution of A1 is uniform as depicted in (I)
of Fig. 1, and the model is in the confinement phase, which
corresponds to the UBS in gravity. As we decrease L0,
from (4), the coefficient a1 reaches 0 at

L0
H ¼ logD

~λð1=3Þ

(
1þ 1

D

�
203

160
−

ffiffiffi
5

p

3

�)
þO

�
logD
D2

�
; ð5Þ

and ju1j ¼ 0 becomes unstable. This is the Hagedorn
instability of the model (2), and it triggers the deconfine-
ment transition. We call L0

H the Hagedorn point.
Generally, the order of the CD transition in the effective

action (3) with arbitrary parameters ðan; bÞ is determined
by the sign of b at the Hagedorn point (a1jL0¼L0

H
¼ 0,

a2;3;… > 0) [28,29]. If b is positive, the second-order
transition occurs at L0

H and the stable solution becomes
ju1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a1=2b

p
, ju2;3;���j ¼ 0. Then, the eigenvalue dis-

tribution becomes nonuniform as shown in (II) of Fig. 1,
which corresponds to the NUBS in gravity. On the other
hand, if b is negative, the first-order transition occurs at L0

c,
which is slightly larger than L0

H. The stable configuration is
either the nonuniform phase [(II) of Fig. 1] or the localized
phase [(III) of Fig. 1] depending on the details of the
effective action.
In our case, b in Eq. (4) is positive and the model (2) at

large D has the second-order transition. Therefore, the CD
transition bears resemblance to the transitions in gravity
and the fluid model at large D.
Numerical results for small D.—To investigate the

model (2) for small D, we perform the hybrid MC lattice

calculation at D ¼ 2; 3; 9; 15, and 20 [30]. We use a unit
g2N ¼ 1 and take the number of the lattice sites to be 15. To
specify the phase transition point at large N, we evaluate
the Polyakov loop ju1j and its susceptibility χ ≡
N2ðhju1j2i − hju1ji2Þ as plotted in Fig. 2. Both the first
and second-order transitions are expected to occur at the
critical point L0

c where χ takes the maximum. The obtained
critical points are summarized in Table I.
To evaluate the order of the transition, we plot the density

distribution of ju1j at the critical point in Fig. 3. At
D ¼ 2; 3; 9, and 15, we observe two peaks as N grows
larger. The peak which lies at smaller and larger ju1j
corresponds to the confinement and deconfinement, respec-
tively. This shows the existence of the metastable state,
which is strong evidence for the first-order transition. At
D ¼ 20, due to the CPU cost, we have calculated only up to
N ¼ 28 and do not observe two peaks clearly. However,
the density distribution seems to consist of two wide peaks.
To ensure this point, we add the term b0ju1j4 with b0 ¼ 0.05
to the action (2) at D ¼ 2 so that the model has the second-
order transition. [Recall that the analysis of the effective
action (3) shows that the transition tends to be of second
order at b0 > 0.] The obtained ju1j density distribution at
the second-order critical point in Fig. 3 is a single wide
peak, in contrast with the case ofD ¼ 20. Thus, we presume
that the transition is still of first order at D ¼ 20 [31].
Note that the peaks of ju1j in Fig. 3 in the confinement

phase do not lie exactly at ju1j ¼ 0, due to the finite-N
effect. Using the 1=D expansion, we calculate the leading
1=N correction at large L0 (L0 ≫ L0

H) from Eq. (3) as

hju1ji ¼
R Q

ndundu
†
nju1je−SeffR Q

ndundu
†
ne−Seff

≃ 1

2N

ffiffiffiffiffi
π

a1

r
: ð6Þ

Here, each un can be treated as an independent variable and
bju1j4 can be neglected at large N in the confinement phase
[28]. This effect is significant near the Hagedorn point
where a1 is close to 0. This result quantitatively agrees with
the MC results as shown in Fig. 4 (Left).
As further evidence of the phase transition order, we fit

the N dependence of χ at the critical point as

χjL0¼L0
c
¼ αN2p þ γ; ð7Þ
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FIG. 2 (color online). The L0 dependence of hju1ji and χ
at D ¼ 2. We read off the critical point L0

c at large N from the
peak of χ.

TABLE I. The critical point L0
c and the exponent p in the fitting (7). L0ð1=DÞ

H is the Hagedorn point obtained by the

1=D expansion (5), whose error is estimated as 1=ðL0ð1=DÞ
H D2Þ. The first-order transition is predicted to occur at L0

slightly larger than L0
H , and the closeness of L0

c and L0ð1=DÞ
H indicates that the 1=D expansion predicts the Hagedorn

point well.

D 2 3 9 15 20 2(with b0ju1j4)
1=L0

c (MC) 1.3175 1.0975 0.901 0.884 0.884 1.3500
p 1.05(3) 1.00(1) 1.01(4) 1.12(14) 0.92(9) 0.81(5)

1=L0ð1=DÞ
H 1.4(4) 1.1(1) 0.89(1) 0.879(4) 0.883(2) 1.4(4)
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with the fitting parameters ðα; γ; pÞ. The analysis of the
effective action (3) at largeN shows that the exponent p is 1
and 1=2 for the first (b < 0) and second order (b > 0),
respectively. Thus, we can distinguish the transition order
by p [32]. The result is summarized in Table I and
Fig. 4 (Right). For D ≤ 15, p is close to 1, which is
consistent with the first-order transition. AtD ¼ 20, we have
p ¼ 0.92ð9Þ, which is not decisive due to error. However, it
differs from the second-order case (D ¼ 2 with b0ju1j4),
where p ¼ 0.81ð5Þ, and would be consistent with the first-
order transition.
Therefore, we conclude that the CD transitions in the

model (2) are of first order until at least D ¼ 15 (presum-
ably until D ¼ 20), which is again consistent with gravity
and the fluid model which have the first-order transition at
small D [33].

Conclusions.—We have studied theD dependence of the
CD transition in the model (2) and observed that it is of first
and second order at small and largeD. This tendency of the
D dependence is similar to the transitions in gravity and
the fluid model [9,10] and is strong evidence that the
Hagedorn instability in the model (2) is related to the GL
and RP instabilities. It is important to study larger D
numerically until we reach the critical dimension where the
transition switches from the first to the second order to
confirm this relation.
One reason why our model shows the fluid natures may

be that it describes the N D0-branes in RD−1 × S1β × S1L
which may compose the fluid. However, D is merely the
dimension of the internal SOðDÞ symmetry (flavor) of the
adjoint scalars XI and is not a specific parameter of our
model. Besides, the dual spatial circle S1L0 in the model (2)
can be regarded as the thermal temporal circle. Therefore,
some fluid interpretations may be widely applied to other
finite-temperature large-N gauge theories, too. It will open
a new possibility that not only gravity, but also the fluid
models illuminate the dynamics of the large-N gauge
theories.
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